ChemicalBook > CAS DataBase List > Vinorelbine

Vinorelbine

Product Name
Vinorelbine
CAS No.
71486-22-1
Chemical Name
Vinorelbine
Synonyms
CL069;CS-404;F 80520;NSC32797;NSC 32797;NSC-32797;NVBKW-2307;VINORELBINE;Navelbine(R);KW 2307 base
CBNumber
CB3469220
Molecular Formula
C45H54N4O8
Formula Weight
778.93
MOL File
71486-22-1.mol
More
Less

Vinorelbine Property

alpha 
D20 +52.4° (c = 0.3 in CHCl3)
Density 
1.36±0.1 g/cm3(Predicted)
storage temp. 
Store at 4°C, protect from light
solubility 
>25.9mg/mL in DMSO
form 
Powder
pka
11.36±0.60(Predicted)
More
Less

Safety

HS Code 
2939799090
Hazardous Substances Data
71486-22-1(Hazardous Substances Data)
Toxicity
LD50 in mice (mg/m2): 72 i.v.; 78 orally (Mathé, Reizenstein)
More
Less

Hazard and Precautionary Statements (GHS)

Symbol(GHS)
Signal word
Danger
Hazard statements

H301Toxic if swalloed

H315Causes skin irritation

H319Causes serious eye irritation

H341Suspected of causing genetic defects

Precautionary statements

P260Do not breathe dust/fume/gas/mist/vapours/spray.

P280Wear protective gloves/protective clothing/eye protection/face protection.

More
Less

N-Bromosuccinimide Price

Usbiological
Product number
301109
Product name
Vinorelbine
Packaging
20mg
Price
$320
Updated
2021/12/16
Biorbyt Ltd
Product number
orb594364
Product name
Vinorelbine
Packaging
20mg
Price
$341.7
Updated
2021/12/16
American Custom Chemicals Corporation
Product number
API0004597
Product name
VINORELBINE
Purity
95.00%
Packaging
10MG
Price
$701.2
Updated
2021/12/16
Biorbyt Ltd
Product number
orb573065
Product name
Vinorelbine
Purity
>98%
Packaging
100mg
Price
$912.9
Updated
2021/12/16
Medical Isotopes, Inc.
Product number
18808
Product name
Vinorebine
Packaging
25mg
Price
$1500
Updated
2021/12/16
More
Less

Vinorelbine Chemical Properties,Usage,Production

Description

Vinorelbine is a semisynthetic vinca alkaloid differing from vinblastine in the catharantine moiety of the molecule. It is claimed to have a broad spectrum of action both in vifro and in vivo; clinically it has been found effective in the treatment of non-small cell lung cancer, advanced breast cancer, ovarian cancer and Hodgkins disease.

Originator

CNRS (France)

Uses

antimigraine, 5HT[1B/1D] agonist

Uses

Vinorelbine base is an antineoplastic agent with anti-mitotic properties.

Definition

ChEBI: A vinca alkaloid with a norvinblastine skeleton.

Manufacturing Process

(+/-)-5-Ethyl-1,2,3,6-tetrahydro-pyridine-3-carboxylic acid ethyl ester and (+)-tartaric acid were dissolved in hot 95% ethanol. The resulting solution was allowed to slowly cool to room temperature and refrigerated overnight. The crystals were filtered, washed with cold ethanol, and recrystallized from 95% ethanol, cooling as before to give the (+)-tartrate salt of (+)-5-ethyl- 1,2,3,6-tetrahydro-pyridine-3-carboxylic acid ethyl ester.
The salt of (+)-5-ethyl-1,2,3,6-tetrahydro-pyridine-3-carboxylic acid ethyl ester was dissolved in on ice, and 3 N sodium hydroxide was slowly added until the pH reached 11-12. The solution was extracted with chloroform, dried (Na 2 SO 4 ) and evaporated in vacuum to give (+)-5-ethyl-1,2,3,6-tetrahydro- pyridine-3-carboxylic acid ethyl ester as a mobile oil.
Reduction of (+)-5-ethyl-1,2,3,6-tetrahydro-pyridine-3-carboxylic acid ethyl ester with LiAlH 4 in THF, using the usual protocols associated with this reagent gave the (+)-5-ethyl-1,2,3,6-tetrahydro-pyridine-3-ol. This material was used directly in the next step.
To a solution of the (+)-5-ethyl-1,2,3,6-tetrahydro-pyridine-3-ol in ethanol and triethylamine water, cooled equiv.) was added allyl bromide and the mixture heated at reflux for 12 h. The mixture was evaporated in vacuo and the residue dissolved in chloroform and washed with 5% aqueous K 2 CO 3 . The chloroform layer was dried (MgSO 4 ) and evaporated in vacuo to give the (+)- 1-allyl-5-ethyl-1,2,3,6-tetrahydro-pyridin-3-ol.
The (+)-1-allyl-5-ethyl-1,2,3,6-tetrahydro-pyridin-3-ol was converted into its methanesulfonate ester in the standard manner by treatment with methanesulfonic acid.
To a solution of the (+)-1-allyl-5-ethyl-1,2,3,6-tetrahydro-pyridin-3-methanesulfonate in acetone was added lithium bromide (6.9 g, 0.08 mol) and the suspension heated at reflux. The acetone was evaporated in vacuo, and the residue partitioned between chloroform and cold aqueous 5% K 2 CO 3 solution. The chloroform layer was dried (MgSO 4 ), filtered, and evaporated in vacuo to give a brown oil. Fractional distillation gave the (+)-1-allyl-5-ethyl- 1,2,3,6-tetrahydro-pyridin-3-bromide.
To a solution of N-phenylsulfonyl indole (5.14 g, 20 mmol) in dry THF (100 ml) under argon, and cooled to -65°C., was added t-butyl lithium (13 ml, 22 mmol, 1.7 M in pentane). The solution was allowed to warm to 0°C and stirred for 1 h. The above solution was added via canula to a stirred solution of dimethyloxalate (9.5 g, 80 mmol) in THF (250 ml) at 0°C. After 4 h at 0°C the mixture was quenched with saturated aqueous NH 4 Cl and extracted with ethyl acetate (3 times 100 ml). The dried (MgSO 4 ) extract was evaporated in vacuum, and the residue purified by chromatography over silica gel eluting with hexane/ethyl acetate (b 10:1) to give the N-phenylsulfonyl-2-methoxalyl indole (2.3 g, 34%). Melting point 111°-112°C (from ethyl acetate).
To the (+)-1-allyl-5-ethyl-1,2,3,6-tetrahydro-pyridin-3-bromide in a flame dried flask under argon was added Mg powder and dry THF. The mixture was heated at reflux and two drops of 1,2-dibromoethane added to initiate Grignard reagent formation. After 3 h the turbid suspension was cooled to room temperature and added to a solution of the N-phenylsulfonyl-2- methoxalyl indole in THF, at 0°C under argon. After 30 min the solution was quenched with saturated aqueous NH 4 Cl solution, and diluted with ethyl acetate. The dried (MgSO 4 ) extract was evaporated in vacuo to give the (+)- methyl 2-[2-(N-phenylsulfonyl)indolyl]-2-hydroxy-3-[3-(N-allyl 5-ethyl- 1,2,3,6-tetrahydro-peridine)]propionate consisting of a mixture of diastereomers at C-2 (1:1). For the purpose of characterization, one of the diastereomers was purified by chromatography over silica gel eluting with hexane/ethyl acetate/10% aqueous NH 4 OH/MeOH (15:3:1) to give the (+)- methyl 2-[2-(N-phenylsulfonyl)indolyl]-2-hydroxy-3-[3-(N-allyl-5-ethyl- 1,2,3,6-tetrahydro-pyridine)]propionate.
To a solution of the (+)-methyl 2-[2-(N-phenylsulfonyl)indolyl]-2-hydroxy-3- [3-(N-allyl-5-ethyl-1,2,3,6-tetrahydropyridine)]propionate (a mixture of diastereomers at C-2) in dry dimethoxyethane at -50°C under argon was added sodium naphthalenide (1 M in THF). The mixture was quenched with trifluoroacetic acid, and extracted with ethyl acetate (3 times 10 ml). The extract was washed with saturated aqueous NaHCO 3 solution, dried (MgSO 4 ) and evaporated in vacuo to give the (+)-methyl 2-(2-indolyl)-2-hydroxy-3-[3- (N-allyl-5-ethyl-1,2,3,6-tetrahydro-pyridine )]propionate. The mixture of diastereomers was not separated but chromotagraphed over silica gel eluting with hexane/ethyl acetate/10% aqueous NH 4 OH/MeOH (5:1:1) to remove more polar impurities.
A solution of the (+)-methyl 2-(2-indolyl)-2-hydroxy-3-[3-(N-allyl-5-ethyl- 1,2,3,6-tetrahydro-pyridine)]propionate (mixture of diastereomers), and vindoline in 1% HCl/MeOH was heated at reflux for 2 h. The solution was evaporated in vacuo and the residue dissolved in chloroform and washed with saturated aqueous NaHCO 3 solution. The chloroform layer was dried over MgSO 4 , filtered, and evaporated to give a foam consisting of a mixture of S-and R-diastereomers. The diastereomeric mixture was separated by preparative HPLC eluting with hexane/CH 2 Cl 2 /MeOH/10% aqueous NH 4 OH to give S-(+)-4-acethoxy-9-[2-(1-allyl-5-ethyl-1,2,3,6-tetrahydro-pyridin-3-yl)-1- (1H-indol-2-yl)-1-methoxycarbonyl-ethyl]-3a-ethyl-5-hydroxy-8-methoxy-6- methyl-3a,4,5,5a,6,11,12,12b-octahydro-1H-6,12a-diaza-indeno[7,1- ca]fluorene-5-carboxylic acid methyl ester.
The S-(+)-4-acethoxy-9-[2-(1-allyl-5-ethyl-1,2,3,6-tetrahydro-pyridin-3yl)-1- (1H-indol-2-yl)-1-methoxycarbonyl-ethyl]-3a-ethyl-5-hydroxy-8-methoxy-6- methyl-3a,4,5,5a,6,11,12,12b-octahydro-1H-6,12a-diaza-indeno[7,1- ca]fluorene-5-carboxylic acid methyl ester in 1,2-dichloroethane, containing proton sponge at 25°C, was treated with 1-chloroethyl chloroformate (0.056 ml, 0.512 mmol, 2.0 equiv.) and the resulting solution stirred for 3 h. The mixture was evaporated in vacuo, and the residue dissolved in methanol and heated at reflux for 3 h. The methanol was evaporated and the residue dissolved in chloroform and purified by chromatography over silica gel eluting with CHCl 3 , MeOH, 10% aqueous NH 4 OH (20:1) to give S-(+)-4-acethoxy-9- [2-(5-ethyl-1,2,3,6-tetrahydro-pyridin-3yl)-1-(1H-indol-2-yl)-1- methoxycarbonyl-ethyl]-3a-ethyl-5-hydroxy-8-methoxy-6-methyl- 3a,4,5,5a,6,11,12,12b-octahydro-1H-6,12a-diaza-indeno[7,1-ca]fluorene-5- carboxylic acid methyl ester.
To a solution of the S-(+)-4-acethoxy-9-[2-(5-ethyl-1,2,3,6-tetrahydro- pyridin-3yl)-1-(1H-indol-2-yl)-1-methoxycarbonyl-ethyl]-3a-ethyl-5-hydroxy- 8-methoxy-6-methyl-3a,4,5,5a,6,11,12,12b-octahydro-1H-6,12a-diaza- indeno[7,1-ca]fluorene-5-carboxylic acid methyl ester in dioxane and glacial acetic acid was added 37% aqueous formaldehyde and the mixture stirred at 35°C for 24 h. The solution was evaporated in vacuo and the residue suspended in chloroform and washed with cold aqueous 5% K 2 CO 3 solution. The chloroform layer was dried (MgSO 4 ), filtered, and evaporated. The residue was chromatographed eluting with EtOAc/MeOH, 10% NH 4 OH to give the product navelbine.

brand name

Navelbine (Pierre).

Therapeutic Function

Antineoplastic

Pharmacokinetics

This semisynthetic alkaloid is unique in having oral bioavailability, but it currently is available only for IV injection. The initial phase elimination half-life is on par with that observed for vincristine and vinblastine, and the terminal phase half-life is between 28 and 44 hours.

Clinical Use

Vinorelbine is particularly useful in the treatment of advanced non–small cell lung cancer and can be administered alone or in combination with cisplatin. It is thought to interfere with mitosis in dividing cells through a relatively specific action on mitotic microtubules.

Side effects

Although dose-limiting granulocytopenia is the major adverse effect, potentially fatal interstitial pulmonary changes have been noted, and patients with symptoms of respiratory distress should be promptly evaluated. As with all vinca alkaloids, elimination is primarily hepatobiliary, and dosage reduction should be considered in patients with liver dysfunction.

Drug interactions

Potentially hazardous interactions with other drugs
Antibacterials: increased risk of neutropenia with clarithromycin; possible increased risk of ventricular arrhythmias with delamanid.
Antifungals: metabolism possibly inhibited by itraconazole, increased risk of neurotoxicity.
Antimalarials: avoid with piperaquine with artenimol.
Antipsychotics: avoid concomitant use with clozapine (increased risk of agranulocytosis).

Metabolism

Metabolism of vinorelbine appears to be hepatic. All metabolites of vinorelbine are formed by the CYP3A4 isoform of cytochromes P450, except 4-O-deacetylvinorelbine which is likely to be formed by carboxylesterases.
4-O-deacetylvinorelbine is the only active metabolite and the main one observed in blood. Excretion is mainly by the biliary route (18.5
% appears in the urine).

Vinorelbine Preparation Products And Raw materials

Raw materials

Preparation Products

More
Less

Vinorelbine Suppliers

LGM Pharma
Tel
1-(800)-881-8210
Fax
615-250-9817
Email
inquiries@lgmpharma.com
Country
United States
ProdList
2123
Advantage
70
Chemsky (shanghai) International Co.,Ltd
Tel
021-50135380
Email
shchemsky@sina.com
Country
China
ProdList
15402
Advantage
60
Jinan Trio PharmaTech Co., Ltd.
Tel
+86 (531) 88811783
Fax
+86 (531) 55696010 QQ 1762738062
Email
sales@trio-pharmatech.com (International market)
Country
China
ProdList
1856
Advantage
62
Sichuan Kulinan Technology Co., Ltd
Tel
400-1166-196 18981987031
Fax
028-84555506 800101999
Email
cdhxsj@163.com
Country
China
ProdList
11707
Advantage
57
Shanghai civi chemical technology co.,Ltd
Tel
86-21-34053660
Fax
86-21-34053661
Email
sale@labgogo.com
Country
China
ProdList
9865
Advantage
52
Beijing HuaMeiHuLiBiological Chemical
Tel
010-56205725
Fax
010-65763397
Email
waley188@sohu.com
Country
China
ProdList
12335
Advantage
58
Shanghai T&W Pharmaceutical Co., Ltd.
Tel
+86 21 61551611
Fax
+86 21 50676805
Country
China
ProdList
9891
Advantage
58
Shanghai Ruji Biology Technology Co., Ltd.
Tel
+86-21-65211385-8001 36031160
Fax
+86-21-65211385-8004
Email
sales@shruji.com
Country
China
ProdList
3224
Advantage
55
Cantotech Chemicals, Ltd.
Tel
86-0755-86635001
Fax
86-0755-22642228
Email
cantotech@126.com
Country
China
ProdList
4566
Advantage
55
Shanghai Tauto Biotech Co., Ltd.
Tel
021-51320588
Fax
0086-21-51320502
Email
tauto@tautobiotech.com
Country
China
ProdList
3989
Advantage
66
More
Less

View Lastest Price from Vinorelbine manufacturers

Shaanxi TNJONE Pharmaceutical Co., Ltd
Product
Vinorelbine 71486-22-1
Price
US $0.00/kg
Min. Order
1kg
Purity
99%
Supply Ability
20tons
Release date
2024-04-16
Zhuozhou Wenxi import and Export Co., Ltd
Product
Vinorelbine 71486-22-1
Price
US $15.00-10.00/KG
Min. Order
1KG
Purity
99%+ HPLC
Supply Ability
Monthly supply of 1 ton
Release date
2021-07-10
Zhuozhou Wenxi import and Export Co., Ltd
Product
Vinorelbine 71486-22-1
Price
US $15.00-10.00/KG
Min. Order
1KG
Purity
99%+ HPLC
Supply Ability
Monthly supply of 1 ton
Release date
2021-07-08

71486-22-1, VinorelbineRelated Search:


  • 3’,4’-didehydro-4’-deoxy-c’-norvincaleukoblastin
  • vinorelbine D-tartrate
  • CL069
  • Vinorelbine, 98%, from Catharanthus roseus (L.) G. Don
  • AspidosperMidine-3-carboxylic acid, 4-(acetyloxy)-6,7-didehydro-15-[(2R,6R,8S)-4-ethyl-1,3,6,7,8
  • ANX-530, KW-2307, 5'-Noranhydrovinblastine
  • CS-404
  • nor-5’-anhydrovinblastine
  • VINORELBINE
  • (2β,3β,4β,5α,12R,19α)-4-(Acetyloxy)-6,7-didehydro-15-[(2R,6R,8S)-4-ethyl-1,3,6,7,8,9-hexahydro-8-(Methoxycarbonyl)-2,6-Methano-2H-azecino[4,3-b]indol-8-yl]-3-hydroxy-16-Methoxy-1-Methyl-aspidosperMidine-3-ca
  • 5-Noranhydrovinblastine
  • 3’,4'-Didehydro-4ideoxy-C’-norvincaleukoblastine
  • NVBKW-2307
  • 3',4'-Didehydro-4'-deoxy-C'-norvincaleukoblastine
  • Vinorelbine(Navelbine)
  • Navelbine(R)
  • Aspidospermidine-3-carboxylic acid, 4-(acetyloxy)-6,7-didehydro-15-[(2R,6R,8S)-4-ethyl-1,3,6,7,8,9-hexahydro-8-(methoxycarbonyl)-2,6-methano-2H-azecino[4,3-b]indol-8-yl]-3-hydroxy-16-methoxy-1-methyl- , methyl ester, (2b,3b,4b,5a,12R,19a)-
  • Aspidospermidine-3-carboxylic acid, 4-(acetyloxy)-6,7-didehydro-15-[(2R,6R,8S)-4-ethyl-1,3,6,7,8,9-hexahydro-8-(methoxycarbonyl)-2,6-methano-2H-azecino[4,3-b]indol-8-yl]-3-hydroxy-16-methoxy-1-methyl-, methyl ester, (2b,3b,4b,5a,12b,19a)-
  • Aspidospermidine-3-carboxylic acid, 4-(acetyloxy)-6,7-didehydro-15-[(2R,6R,8S)-4-ethyl-1,3,6,7,8,9-hexahydro-8-(methoxycarbonyl)-2,6-methano-2H-azecino[4,3-b]indol-8-yl]-3-hydroxy-16-methoxy-1-methyl-, methyl ester, (2b,3b,4b,5a,12R,19a)- (9CI)
  • C'-Norvincaleukoblastine, 3',4'-didehydro-4'-deoxy-
  • F 80520
  • KW 2307 base
  • Navelbine base
  • Vinblastine Impurity K
  • Aspidospermidine-3-carboxylic acid, 4-(acetyloxy)-6,7-didehydro-15-[(2R,6R,8S)-4-ethyl-1,3,6,7,8,9-hexahydro-8-(methoxycarbonyl)-2,6-methano-2H-azecino[4,3-b]indol-8-yl]-3-hydroxy-16-methoxy-1-methyl-, methyl ester, (2β,3β,4β,5α,12R,19α)-
  • Vinorelbine USP/EP/BP
  • Vinorelbine (KW-2307)
  • NSC 32797
  • NSC32797
  • NSC-32797
  • vinorelbine ditartrate ,navelbine,nvb
  • Methyl (3aR,3a1R,4R,5S,5aR,10bR)-4-acetoxy-3a-ethyl-9-((2R,6R,8S)-4-ethyl-8-(methoxycarbonyl)-1,3,6,7,8,9-hexahydro-2,6-methanoazecino[4,3-b]indol-8-yl)-5-hydroxy-8-methoxy-6-methyl-3a,3a1,4,5,5a,6,11,12-octahydro-1H-indolizino[8,1-cd]carbazole-5-carboxylate
  • Vinorelbine EP Impurity C (2R,8S-Isomer)
  • 71486-22-1
  • C45H54N4O8
  • ZOMIG
  • reference standards from Chinese medicinal herbs (TCM).
  • standardized herbal extract
  • chemical reagent
  • pharmaceutical intermediate
  • phytochemical
  • Active Pharmaceutical Ingredients
  • Antineoplastic