Chemical Properties History Uses Production Methods
ChemicalBook > CAS DataBase List > Tellurium

Tellurium

Chemical Properties History Uses Production Methods
Product Name
Tellurium
CAS No.
13494-80-9
Chemical Name
Tellurium
Synonyms
TELLOY;tellur;urium L;Tellunium;TELLERIUM;TELLURIUM;nci-c60117;TellurStcke;elluriumatom;ellurium-125
CBNumber
CB3853069
Molecular Formula
Te
Formula Weight
127.6
MOL File
13494-80-9.mol
More
Less

Tellurium Property

Melting point:
450 °C (lit.)
Boiling point:
990 °C (lit.)
Density 
6.24 g/mL at 25 °C (lit.)
vapor pressure 
0Pa at 25℃
storage temp. 
Sealed in dry,Room Temperature
solubility 
insoluble in H2O, benzene, CS2
color 
Silver-white
Specific Gravity
6.24
Resistivity
5.8-33 μΩ-cm, 20°C
Water Solubility 
insoluble H2O, benzene, CS2 [MER06]
Merck 
13,9201
Exposure limits
TLV-TWA 0.1 mg (Te)/m3 (ACGIH)
PEL-TWA: 0.1 mg (Te)/m3 (OSHA)
TWA 0.1 mg (Te)/m3 (NIOSH)
.
InChIKey
VTLHPSMQDDEFRU-UHFFFAOYSA-N
CAS DataBase Reference
13494-80-9(CAS DataBase Reference)
EPA Substance Registry System
Tellurium (13494-80-9)
More
Less

Safety

Hazard Codes 
T
Risk Statements 
25
Safety Statements 
45-28A
RIDADR 
UN 3288 6.1/PG 3
WGK Germany 
3
RTECS 
WY2625000
TSCA 
Yes
HazardClass 
8
PackingGroup 
III
HS Code 
28045000
Hazardous Substances Data
13494-80-9(Hazardous Substances Data)
Toxicity
A member element of group IVa in the Periodic Table with both metallic and non-metallic properties. Tellurium compounds of biological interest include the elemental form, as well as compounds with valences of 12 (telluride), 14 (tellurite), and 16 (tellurate). Commercial applications of tellurium include its use as a coloring agent and as an alloy with other metals. Industrial hazards generally involve the volatile forms including tellurium dioxide and hydrogen telluride rather than the less toxic elemental form. Exposure to potassium tellurite may also occur; this compound is known to cause hemolysis of erythrocytes, probably via its reduction product, telluride. Other non-nervous system effects of exposure to tellurium compounds include weight loss, blue/ black discoloration of skin, and a characteristic garlic breath odor. Animal models have clearly implicated tellurium in induction of specific neuropathological findings. These include its action as a teratogen in the induction of communicating hydrocephalus (treated rats give rise to affected offspring), lipofuscinosis, and peripheral neuropathy.
IDLA
25 mg Te/m3
More
Less

Hazard and Precautionary Statements (GHS)

Symbol(GHS)
Signal word
Danger
Hazard statements

H317May cause an allergic skin reaction

H332Harmful if inhaled

H413May cause long lasting harmful effects to aquatic life

Precautionary statements

P202Do not handle until all safety precautions have been read and understood.

P273Avoid release to the environment.

P280Wear protective gloves/protective clothing/eye protection/face protection.

P302+P352IF ON SKIN: wash with plenty of soap and water.

P308+P313IF exposed or concerned: Get medical advice/attention.

More
Less

N-Bromosuccinimide Price

Sigma-Aldrich
Product number
204544
Product name
Tellurium
Purity
pieces, 99.999% trace metals basis
Packaging
20g
Price
$112
Updated
2024/03/01
Sigma-Aldrich
Product number
204544
Product name
Tellurium
Purity
pieces, 99.999% trace metals basis
Packaging
100g
Price
$323
Updated
2024/03/01
Alfa Aesar
Product number
047187
Product name
Tellurium, plasma standard solution, Specpure®
Purity
Te 10,000μg/ml
Packaging
500ml
Price
$242
Updated
2024/03/01
Alfa Aesar
Product number
047183
Product name
Tellurium, plasma standard solution, Specpure®
Purity
Te 1000μg/ml
Packaging
50ml
Price
$40.65
Updated
2024/03/01
Alfa Aesar
Product number
047183
Product name
Tellurium, plasma standard solution, Specpure®
Purity
Te 1000μg/ml
Packaging
500ml
Price
$150.65
Updated
2024/03/01
More
Less

Tellurium Chemical Properties,Usage,Production

Chemical Properties

Tellurium is a heavy metal, which is processed as a grey powder. It has hexagonal, rhombohedral structure, a low water solubility and high relative density. The particle size ranges from 52.36 to 112.98 μm.

Tellurium is a silvery white metal in group 16 of the periodic table. It shares chemical and clinical properties with selenium(Amdur, 1947, 1958; Schroeder et al., 1967; Shie andDeeds, 1920). Telluriumis a semiconductor and may have multiple electron states (-2, 0, +2, +4, +6). It can react with hydrogen to form hydrogen telluride and with halogens. Tellurite (+2) and teleurate (+4) compounds are water soluble. Elemental tellurium burns, producing a blue flame and tellurium dioxide.

History

The element was discovered by Muller von Reichenstein in 1782 while investigating a bluish-white ore of gold. The element was isolated from this ore by Klaproth in 1798, who suggested the name “tellurium” after the Latin word tellus, meaning earth. Tellurium occurs in nature only in minute quantities. It is found in small amounts in many sulfide deposits. One of the more common tellurium minerals is calaverite, AuTe2 , in which the metal is combined with gold. Some other tellurium minerals are altaite, PbTe; sylvanite, (Ag,Au)Te2; rickardite, Cu4Te3; tetradymite, Bi2Te2S; petzite, Ag3AuTe2 and coloradoite, HgTe. The metal is found in the native state and also in the form of its dioxide, tellurite, TeO2. The abundance of tellurium in the earth’s crust is estimated to be about 1 µg/kg.

Uses

Small amounts of tellurium are added to stainless steel and copper to improve their machinability. It enhances the strength and hardness of lead and protects lead from the corrosive action of sulfuric acid. Tellurium also is a strong chilling agent in iron castings. It controls the chill and imparts a tough abrasion resistance to the surface.
Tellurium is a curing agent for natural and synthetic rubber. It improves mechanical properties of the rubber imparting resistance to heat and abrasion. Tellurium is a coloring agent in glass, ceramics, and enamels. Traces of tellurium incorporated into platinum catalysts make the catalytic hydrogenation of nitric oxide favorable to forming hydroxylamine. A major application of tellurium is in semiconductor research. Tellurides of lead and bismuth are used in thermoelectric devices for power generation and refrigeration.

Production Methods

Tellurium is recovered from the anode slimes produced in electrolytic refining of copper. Other metals present in these slimes are gold, silver, and selenium, which are all recovered as by-products in the extraction of tellurium. Tellurium is leached with caustic soda solution and the leachate upon neutralization precipitates tellurium dioxide, TeO2, in crude and impure form. A part of tellurium remaining in the slimes can be recovered during extraction of gold and silver. In this gold and silver recovery process, tellurium incorporates into the soda slag obtained from roasting the slimes in a furnace. Soda slag is produced when leached with a solution of caustic soda. The liquor is neutralized to form a crude precipitate of tellurium dioxide.
Crude tellurium dioxide is dissolved in a strong solution of caustic soda to form sodium tellurite. Electrolysis of sodium tellurite solution deposits tellurium metal on the stainless steel cathode.
Also, the tellurium metal can be prepared by thermal reduction of dioxide. However, prior to reduction crude dioxide is refined by successive caustic leaching and neutralization steps mentioned above.
Refined tellurium contains traces of lead, copper, iron, selenium, and other impurities. Highly pure tellurium can be obtained either by distilling refined tellurium in vacuum or by the zone melting process. The last traces of selenium can be removed as hydride by treating molten tellurium with hydrogen.

Description

Tellurium is one of the rarest elements on earth similar to selenium, and was discovered in Transylvania in 1782 by Franz-Joseph Muller von Reichenstein. The name derived from the Latin word for earth. Tellurium is occasionally found naturally, more often as telluride of gold, calaverite.

Chemical Properties

Tellurium is a grayish or silvery white, lustrous, crystalline, semimetallic element. It may exist in a hexagonal crystalline form or an amorphous powder.Soluble in sulfuric acid, nitric acid, potassium hydroxide, and potassium cyanide solutions; insoluble in water. Imparts garlic-like odor to breath, can be depilatory. It is a ptype semiconductor and its conductivity is sensitive to light exposure. It is found in sulfide ores and is produced as a by-product of copper or bismuth refining.

Physical properties

Tellurium is a silver-white, brittle crystal with a metallic luster and has semiconductorcharacteristics. It is a metalloid that shares properties with both metals and nonmetals, andit has some properties similar to selenium and sulfur, located just above it in group 16 of theperiodic table.
There are two allotropic forms of tellurium: (1) the crystalline form that has a silvery metallicappearance and a density of 6.24 g/cm3, a melting point of 499.51°C, and a boiling point of988°C; and (2) the amorphous allotrope that is brown in color and has a density of 6.015g/cm3and ranges for the melting and boiling point temperatures similar to the crystalline form.

Isotopes

There are a total of 48 isotopes of tellurium. Eight of these are consideredstable. Three of the stable ones are actually radioactive but have such long half-livesthat they still contribute to the natural abundance of tellurium in the crust of the Earth.The isotope Te-123 (half-life of 6×10+14 years) contributes 0.89% of the total telluriumfound on Earth, Te-128 (half-life of 7.7×10+24 years) contributes 31.74% to the naturalabundance, and Te-130 (half-life of 0.79×10+21 years) contributes 34.08% to the telluriumin the Earth’s crust. The other five stable isotopes and the percentage of theirnatural abundance are as follows: Te-120 = 0.09%, Te-122 = 2.55%, Te-124 = 4.74%,Te-125 = 7.07%, and Te-126 = 18.84%. The other 40 isotopes are all radioactive withshort half-lives.

Origin of Name

The name “tellurium” is derived from the Latin word for Earth, tellus.

Occurrence

Tellurium is the 71st most abundant element on Earth. It makes up a small portion ofigneous rocks and is sometimes found as a free element, but is more often recovered fromseveral ores. Its major ores are sylvanite (AgAuTe4), also known as graphic tellurium, calaverite,sylvanite, and krennerite, all with the same general formula (AuTe2). Other minor ores arenagyagite, black tellurium, hessite, altaite, and coloradoite. In addition, it is recovered fromgold telluride (AuTe2). Significant quantities are also recovered from the anode “slime” of theelectrolytic refining process of copper production.

Characteristics

The pure form of tellurium burns with a blue flame and forms tellurium dioxide (TeO2).It is brittle and is a poor conductor of electricity. It reacts with the halogens of group 17, butnot with many metals. When it reacts with gold, it forms gold telluride. Tellurium is insolublein water but readily reacts with nitric acid to produce tellurous acid. If inhaled, it produces agarlic-like odor on one’s breath.

History

Discovered by Muller von Reichenstein in 1782; named by Klaproth, who isolated it in 1798. Tellurium is occasionally found native, but is more often found as the telluride of gold (calaverite), and combined with other metals. It is recovered commercially from the anode muds produced during the electrolytic refining of blister copper. The U.S., Canada, Peru, and Japan are the largest producers of the element. Crystalline tellurium has a silvery-white appearance, and when pure exhibits a metallic luster. It is brittle and easily pulverized. Amorphous tellurium is formed by precipitating tellurium from a solution of telluric or tellurous acid. Whether this form is truly amorphous, or made of minute crystals, is open to question. Tellurium is a p-type semiconductor, and shows greater conductivity in certain directions, depending on alignment of the atoms. Its conductivity increases slightly with exposure to light. It can be doped with silver, copper, gold, tin, or other elements. In air, tellurium burns with a greenish-blue flame, forming the dioxide. Molten tellurium corrodes iron, copper, and stainless steel. Tellurium and its compounds are probably toxic and should be handled with care. Workmen exposed to as little as 0.01 mg/m3 of air, or less, develop “tellurium breath,” which has a garlic-like odor. Forty-two isotopes and isomers of tellurium are known, with atomic masses ranging from 106 to 138. Natural tellurium consists of eight isotopes, two of which are radioactive with very long half-lives. Tellurium improves the machinability of copper and stainless steel, and its addition to lead decreases the corrosive action of sulfuric acid on lead and improves its strength and hardness. Tellurium catalysts are used in the oxidation of organic compounds and are used in hydrogenation and halogenation reactions. Tellurium is also used in electronic and semiconductor devices. It is also used as a basic ingredient in blasting caps, and is added to cast iron for chill control. Tellurium is used in ceramics. Bismuth telluride has been used in thermoelectric devices. Tellurium costs about 50¢/g, with a purity of about 99.5%. The metal with a purity of 99.9999% costs about $5/g.

Uses

Tellurium’s major use is as an alloy with copper and stainless steel. It makes these metalseasier to machine and mill (cut on a lathe). It is also used as a vulcanizing agent in the productionof rubber, as a coloring agent for glass and ceramics, and for thermoelectrical devices.
Along with lithium, it is used to make special batteries for spacecraft and infrared lamps.Tellurium can be used as a p-type semiconductor, but more efficient elements can do a betterjob. It is also used as a depilatory, which removes hair from skin.
Although tellurium forms many compounds, most of them have little commercial value.

Uses

The metal is used in vulcanizing rubber, instorage batteries, and as a coloring agent inceramics. It is also used as an additive toiron, steel, and copper. Many tellurium saltsfind application on semiconductors.

Uses

Tellurium is a common constituent of ores that contain silver, gold, lead, antimony, and bismuth, and it is often present in small amounts in coal. Tellurium is widely used in metallurgy because it improves the properties of copper, tin, lead-based alloys, steel, and cast iron. It is used in rubber manufacturing to increase heat resistance and to retard the aging of rubber hoses and cable coatings. Small amounts are used in the electronics industry for lasers and photoreceptors. Tellurium is not an essential micronutrient; therefore, it is not found in nutritional supplements.
As coloring agent in chinaware, porcelains, enamels, glass; reagent in producing black finish on silverware; in manufacture of special alloys of marked electrical resistance; in semiconductor research.

Definition

A nonmetallic element with many properties similar to selenium and sulfur. Atomic number 52; group VIA of the period table; aw 127.60; valences of 2, 4, 6; eight stable isotopes.

Production Methods

Elemental tellurium (Te) has some metallic properties, although it is classed as a nonmetal or metalloid. The name is derived from the Latin word for earth, tellus. Tellurium is occasionally found naturally, more often as telluride of gold, calaverite. The elemental form has a bright luster, is brittle, readily powders, and burns slowly in air. Tellurium exists in two allotropic forms, in the form of powder and hexagonal crystalline (isomorphous) with gray selenium. The concentration in the earth’s crust is about 0.002 ppm. It is recovered from anode muds during the refining of blister copper. It is also found in various sulfide ores along with selenium and is produced as a by-product of metal refineries. The United States, Canada, Peru, and Japan are the largest producers.
Tellurium’s industrial applications include its use as a metallurgical additive to improve the characteristics of alloys of copper, steel, lead, and bronze. Increased ductility results from its use in steel and copper alloys. Addition of tellurium to cast iron is used for chill control, and it is a basic part of blasting caps. It is used in some chemical processes as a catalyst for synthetic fiber production, and as a vulcanizing agent and accelerator in the processing of rubber.

Definition

tellurium: Symbol Te. A silvery metalloidelement belonging to group16 (formerly VIB) of the periodictable; a.n. 52; r.a.m. 127.60; r.d. 6.24(crystalline); m.p. 449.5°C; b.p.989.8°C. It occurs mainly as telluridesin ores of gold, silver, copper,and nickel and it is obtained as a byproductin copper refining. There areeight natural isotopes and nine radioactiveisotopes. The element is usedin semiconductors and smallamounts are added to certain steels.Tellurium is also added in smallquantities to lead. Its chemistry issimilar to that of sulphur. It was discoveredby Franz Müller (1740–1825)in 1782.

General Description

Grayish-white, lustrous, brittle, crystalline solid; dark-gray to brown, amorphous powder with metallic characteristics. Used as a coloring agent in chinaware, porcelains, enamels, glass; producing black finish on silverware; semiconductor devices and research; manufacturing special alloys of marked electrical resistance. Improves mechanical properties of lead; powerful carbide stabilizer in cast iron, Tellurium vapor in "daylight" lamps, vulcanization of rubber. Blasting caps. Semiconductor research.

Reactivity Profile

Tellurium is attacked by chlorine fluoride with incandescence. When Tellurium and potassium are warmed in an atmosphere of hydrogen, combination occurs with incandescence [Mellor 11:40. 1946-47]. Burning Tellurium produces toxic Tellurium oxide gas. Avoid solid sodium, halogens, interhalogens, metals, hexalithium disilicide. Reacts with nitric acid; reacts with concentrated sulfuric acid forming a red solution. Dissolves in potassium hydroxide in the presence of air with formation of deep red solution; combines with halogens. Avoid antimony and chlorine trifluoride; chlorine trifluoride reacts vigorously with Tellurium producing flame. Fluorine and Tellurium react with incandescence. Lithium silicide attacks Tellurium with incandescence. Reaction with zinc is accompanied by incandescence (same potential with cadmium, only hazard is less). A vigorous reaction results when liquid Tellurium is poured over solid sodium [EPA, 1998].

Hazard

All forms of tellurium are toxic in gas form. The vapors of all the compounds of the dustand powder forms of the element should not be inhaled or ingested. When a person is poisonedwith tellurium, even in small amounts, the breath will smell like garlic.

Health Hazard

Although tellurium in elemental form haslow toxicity, ingestion can produce nausea,vomiting, tremors, convulsions, and centralnervous system depression. In addition,exposure to the metal or to its compoundscan generate garlic-like odor in breath, sweat,and urine. Such odor is imparted by dimethyltelluride that is formed in the body. Oralintake of large doses of the metal or itscompounds can be lethal. Clinical symptomsare similar for most tellurium salts,which include headache, drowsiness, lossof appetite, nausea, tremors, and convulsions.High exposure can produce metallictaste, dry throat, chill and other symptoms.Inhalation of dust or fume of the metalcan cause irritation of the respiratory tract.Chronic exposure can produce bronchitis andpneumonia.

Fire Hazard

A finely divided suspension of elemental Tellurium in air will explode. Insoluble in water. Burning Tellurium produces toxic Tellurium oxide gas. Avoid solid sodium, halogens, interhalogens, metals, hexalithium disilicide. Reacts with nitric acid; reacts with concentrated sulfuric acid forming a red solution. Dissolves in potassium hydroxide in the presence of air with formation of deep red solution; combines with halogens. Avoid antimony and chlorine trifluoride; chlorine trifluoride reacts vigorously with Tellurium producing flame. Fluorine and Tellurium react with incandescence. Lithium silicide attacks Tellurium with incandescence. Reaction with zinc is accompanied by incandescence (same potential with cadmium, only hazard is less). A vigorous reaction results when liquid Tellurium is poured over solid sodium.

Flammability and Explosibility

Non flammable

Safety Profile

Poison by ingestion and intratracheal routes. An experimental teratogen. Exposure causes nausea, vomiting, tremors, convulsions, respiratory arrest, central nervous system depression, and garlic odor to breath. Aerosols of tellurium, tellurium dioxide, and hydrogen telluride cause irritation of the respiratory system and may lead to the development of bronchitis and pneumonia. Experimental reproductive effects. Under the proper conditions it undergoes hazardous reactions with halogens (e.g., chlorine, fluorine), interhalogens (e.g., bromine pentafluoride, chlorine fluoride, chlorine trifluoride), metals (e.g., cadmium, potassium, sodium, platinum, tin, zinc), hexalithium disilicide, silver bromate, silver iodate. When heated to decomposition it emits toxic fumes of Te. See also TELLURIUM COMPOUNDS.

Potential Exposure

The primary use of tellurium is in the vulcanization of rubber and as an additive in ferritic steel production. It is also used as a carbide stabilizer in cast iron, a chemical catalyst; a coloring agent in glazes and glass; a thermocoupling material in refrigerating equipment; as an additive to selenium rectifiers; in alloys of lead, copper, steel, and tin for increased resistance to corrosion and stress, workability, machinability, and creep strength; and in certain culture media in bacteriology. Since tellurium is present in silver, copper, lead, and bismuth ores, exposure may occur during purification of these ores.

Environmental Fate

Metals are recalcitrant to degradation; therefore, no biodegradation studies have been performed on tellurium. No aquatic bioaccumulation data exist for tellurium; however, based on its density and low water solubility, it is unlikely to present a concern for bioaccumulation in the water column. No environmental monitoring data are available on the levels of tellurium in sediment or sediment-dwelling organisms. Therefore, it is unclear whether tellurium has the potential to bioaccumulate in this compartment. In humans, tellurium accumulates in the bones. Based on this, it may be assumed that tellurium has the potential to bioaccumulate in vertebrates.

Shipping

UN3288 Toxic solids, inorganic, n.o.s., Hazard Class: 6.1; Labels: 6.1-Poisonous materials, Technical Name Required.

Purification Methods

Purify it by zone refining and repeated sublimation to an impurity of less than 1 part in 108 (except for surface contamination by TeO2). [Machol & Westrum J Am Chem Soc 80 2950 1958.] Tellurium is volatile at 500o/0.2mm. It has also been purified by electrode deposition [Mathers & Turner Trans Amer Electrochem Soc 54 293 1928].

Toxicity evaluation

Tellurium has a low toxicity in its elemental form, but dimethyltelluride is formed in the body. Tellurium caused a highly synchronous primary demyelination of peripheral nerves, related to the inhibition of squalene epoxidase, which blocks cholesterol synthesis. The sequence of metabolic events in sciatic nerve following tellurium treatment initially involves inhibition of the conversion of squalene to 2,3-epoxysqualene, and this block in the cholesterol biosynthesis pathway results, either directly or indirectly, in the inhibition of the synthesis of myelin components and the breakdown of myelin. The efficacy of garlic as a lipid-lowering agent has been recognized, but the biochemical mechanisms underlying this action are currently unknown. It is possible that organic tellurium compounds, which are found in high concentration in fresh garlic buds, may contribute to this action by inhibiting squalene epoxidase, the penultimate enzyme in the synthetic pathway of cholesterol. Weanling rats fed a diet rich in tellurium develop a demyelinating polyneuropathy because of inhibition of this enzyme in peripheral nerves. Chronic exposure to small amounts of tellurium found in garlic might reduce endogenous cholesterol production through inhibition of hepatic squalene epoxidase and so reduce cholesterol levels. Tellurium may also contribute to the characteristic odor of garlic.

Incompatibilities

Finely divided powder or dust may be flammable and explosive. Violent reaction with halogens, interhalogens, zinc and lithium silicide; with incandescence. Incompatible with oxidizers, cadmium; strong bases; chemically active metals; silver bromate; nitric acid.

Tellurium Preparation Products And Raw materials

Raw materials

Preparation Products

More
Less

Tellurium Suppliers

J & K SCIENTIFIC LTD.
Tel
010-82848833 400-666-7788
Fax
86-10-82849933
Email
jkinfo@jkchemical.com
Country
China
ProdList
96815
Advantage
76
Meryer (Shanghai) Chemical Technology Co., Ltd.
Tel
4006608290; 18621169109
Fax
86-21-61259102
Email
market03@meryer.com
Country
China
ProdList
40241
Advantage
62
Alfa Aesar
Tel
400-6106006
Fax
021-67582001/03/05
Email
saleschina@alfa-asia.com
Country
China
ProdList
30132
Advantage
84
BeiJing Hwrk Chemicals Limted
Tel
0757-86329057 18501085097
Fax
010-89508210
Email
sales3.gd@hwrkchemical.com
Country
China
ProdList
7583
Advantage
55
Energy Chemical
Tel
021-021-58432009 400-005-6266
Fax
021-58436166
Email
sales8178@energy-chemical.com
Country
China
ProdList
44751
Advantage
61
Beijing Ouhe Technology Co., Ltd
Tel
010-82967028 13552068683
Fax
+86-10-82967029
Email
2355560935@qq.com
Country
China
ProdList
12458
Advantage
60
JinYan Chemicals(ShangHai) Co.,Ltd.
Tel
13817811078
Fax
86-021-50426522,50426273
Email
sales@jingyan-chemical.com
Country
China
ProdList
9984
Advantage
60
Shandong Xiya Chemical Co., Ltd
Tel
13355009207 13355009207
Fax
0539-6365991
Email
3007715519@qq.com
Country
China
ProdList
18739
Advantage
57
BEST-REAGENT
Tel
400-1166-196 18981987031
Fax
028-84555506 800101999
Email
cdhxsj@163.com
Country
China
ProdList
11726
Advantage
57
Tianjin heowns Biochemical Technology Co., Ltd.
Tel
400 638 7771
Email
sales@heowns.com
Country
China
ProdList
14443
Advantage
57
Sinopharm Chemical Reagent Co,Ltd.
Tel
86-21-63210123
Fax
86-21-63290778 86-21-63218885
Email
sj_scrc@sinopharm.com
Country
China
ProdList
9823
Advantage
79
Aemon Chemical
Tel
0086-755-86198205
Email
acinfo@aemonchem.com
Country
China
ProdList
1937
Advantage
57
Spectrum Chemical Manufacturing Corp.
Tel
021-021-021-67601398-809-809-809 15221380277
Fax
021-57711696
Email
marketing_china@spectrumchemical.com
Country
China
ProdList
9664
Advantage
60
Chengdu Ai Keda Chemical Technology Co., Ltd.
Tel
4008-755-333 18080918076
Fax
028-86757656
Email
800078821@qq.com
Country
China
ProdList
9725
Advantage
55
Thermo Fisher Scientific
Tel
800-810-5118
Fax
+86-10-84193589
Email
cnchemical@thermofisher.com
Country
China
ProdList
17779
Advantage
75
Beijing HuaMeiHuLiBiological Chemical
Tel
010-56205725
Fax
010-65763397
Email
waley188@sohu.com
Country
China
ProdList
12338
Advantage
58
Beijing innoChem Science & Technology Co.,Ltd.
Tel
400-810-7969 010-59572699
Fax
010-59572688
Email
ningzi.li@inno-chem.com.cn
Country
China
ProdList
6139
Advantage
55
Shanghai Jian Chao Chemical Technology Co., Ltd.
Tel
021-50430803 18017383231
Fax
qq:2817624287
Email
983544897@qq.com
Country
China
ProdList
9352
Advantage
55
9ding chemical ( Shanghai) Limited
Tel
4009209199
Fax
86-021-52271987
Email
sales@9dingchem.com
Country
China
ProdList
22519
Advantage
55
Shanghai Aladdin Bio-Chem Technology Co.,LTD
Tel
18521735133 18521732826;
Fax
021-50323701
Email
market@aladdin-e.com
Country
China
ProdList
25015
Advantage
65
The future of Shanghai Industrial Co., Ltd.
Tel
021-61552785
Fax
021-55660885
Email
sales@shshiji.com
Country
China
ProdList
9552
Advantage
55
Shanghai JONLN Reagent Co., Ltd.
Tel
400-0066400 13621662912
Fax
021-55660885
Email
422131432@qq.com
Country
China
ProdList
9986
Advantage
55
Bide Pharmatech Ltd.
Tel
400-1647117 15221909166
Fax
+86-21-61629029
Email
product02@bidepharm.com
Country
China
ProdList
41438
Advantage
60
Chengdu HuaXia Chemical Reagent Co. Ltd
Tel
400-1166-196 13458535857
Fax
QQ:800101999
Email
cdhxsj@163.com
Country
China
ProdList
13358
Advantage
58
ShangHai DeBang Chemical Co., Ltd.
Tel
021-61531158
Fax
021-66315205
Email
910583793@qq.com
Country
China
ProdList
284
Advantage
58
Shanghai Macklin Biochemical Co.,Ltd.
Tel
15221275939 15221275939
Fax
021-50706099
Email
shenlinxing@macklin.cn
Country
China
ProdList
15878
Advantage
55
Hangzhou J&H Chemical Co., Ltd.
Tel
+86-571-87396432
Fax
0571-87396431
Email
sales@jhechem.com
Country
China
ProdList
10015
Advantage
53
Jiangsu Aikon Biopharmaceutical R&D co.,Ltd.
Tel
025-66113011 18112977050
Email
cb6@aikonchem.com
Country
China
ProdList
16687
Advantage
50
Chengdu RunZeBenTu Chemical Co., Ltd
Tel
13096311329 028-88469284 616445927
Fax
028-88469284
Email
616445927@qq.com
Country
China
ProdList
2876
Advantage
50
Chizhou Kailong Import and Export Trade Co., Ltd.
Tel
Fax
-
Email
xg01_gj@163.com
Country
China
ProdList
9503
Advantage
50
Sigma-Aldrich
Tel
021-61415566 800-8193336
Email
orderCN@merckgroup.com
Country
China
ProdList
51471
Advantage
80
Chengdu RunZeBenTu Chemical Co., Ltd
Tel
028-88469284 18000562381
Email
rzbtsj@163.com
Country
China
ProdList
9958
Advantage
56
Codow Chemical Co.,Ltd.
Tel
18620099427 18620099427
Fax
+86-20-62619665
Email
amy@howeipharm.com
Country
China
ProdList
1751
Advantage
55
VWR(Shanghai) Co., Ltd
Tel
400-821-8006
Fax
+86-21-58558801
Email
info_china@vwr.com
Country
China
ProdList
3041
Advantage
75
Shanghai Xilong Biochemical Technology Co., Ltd.
Tel
021-52907766-8042
Fax
021-52906523
Country
China
ProdList
9947
Advantage
58
Shanghai YuanYe Biotechnology Co., Ltd.
Tel
021-61312847; 18021002903
Fax
QQ:3008007432
Email
3008007409@qq.com
Country
China
ProdList
27322
Advantage
60
Shandong Xiya Chemical Co., Ltd.
Tel
4009903999 13395398332
Fax
0539-6365991
Email
sales@xiyashiji.com
Country
China
ProdList
20810
Advantage
60
Chengdu Dianchun Technology Co., Ltd
Tel
400-1166-196 18502815961
Fax
QQ:800101999
Email
cdhxsj@163.com
Country
China
ProdList
14623
Advantage
60
Grader reagent
Tel
18221735425
Email
sales@xinpingchem.com
Country
China
ProdList
9951
Advantage
58
Zhengzhou Acme Chemical Co., Ltd.
Tel
0371-0371-55629727 13323845623
Fax
037155629727
Email
2885676761@qq.com
Country
China
ProdList
9859
Advantage
58
Beijing Solarbio Science & Tecnology Co., Ltd.
Tel
010-50973130 4009686088
Email
3193328036@qq.com
Country
China
ProdList
29797
Advantage
68
Guangdong wengjiang Chemical Reagent Co., Ltd.
Tel
0751-2886750 13927877953
Fax
0751-2886750
Email
3005811397@qq.com
Country
China
ProdList
13360
Advantage
58
Shanghai Civic Chemical Technology Co., Ltd.
Tel
021-34053660
Fax
QQ:2881074831
Email
sale2@labgogo.com
Country
China
ProdList
2018
Advantage
58
Taian Jiaye Biotechnology Co.Ltd
Tel
13127280945
Email
285424065@qq.com
Country
China
ProdList
9980
Advantage
55
Shanghai Orgchem Co.,Ltd.
Tel
+86-21-5877 1921
Fax
+86-21-5877 1925
Email
info@chemofchina.com
Country
China
ProdList
9661
Advantage
55
JinJin Le Chemical Co., Ltd
Tel
10106090
Email
jjlchem2@163.com
Country
China
ProdList
9986
Advantage
58
Shandong Ono Chemical Co., Ltd.
Tel
0539-6362799 20)
Fax
0539-6362799(To 20)
Country
China
ProdList
9998
Advantage
58
9ding chemical ( Shanghai) Limited
Tel
021-021-52271985 17721149837
Fax
+86 (21) 52271987
Email
sales@9dingchem.com
Country
China
ProdList
19806
Advantage
60
Shanghai BaiShun Biological Technology Co., Ltd
Tel
021-37581181
Fax
021-57456066
Email
sales@chem-mall.com
Country
China
ProdList
10335
Advantage
58
Aikon International Limited
Tel
025-66028182 18112977050
Fax
(3)02557626880
Email
cfzhang@aikonchem.com
Country
China
ProdList
15820
Advantage
58
More
Less

View Lastest Price from Tellurium manufacturers

Shaanxi Dideu Medichem Co. Ltd
Product
Tellurium 13494-80-9
Price
US $0.00-0.00/KG
Min. Order
10mg
Purity
99%
Supply Ability
2000tons
Release date
2020-01-16
Career Henan Chemical Co
Product
Tellurium 13494-80-9
Price
US $1.00/g
Min. Order
50 g
Purity
99.9%
Supply Ability
20kg
Release date
2018-12-18
Hebei Jimi Trading Co., Ltd.
Product
Tellurium 13494-80-9
Price
US $50.00/g
Min. Order
100g
Purity
99.99-99.9999
Supply Ability
500kg
Release date
2019-05-30

13494-80-9, TelluriumRelated Search:


  • TELLURIUM, 99.995%TELLURIUM, 99.995%TELLURIUM, 99.995%TELLURIUM, 99.995%
  • Te Target 99.99%
  • Tellunium
  • TELLURIUM: 99.5%, POWDER
  • TELLURIUM POWDER: 99.999%, 30 MESH
  • Tellurium ingot/button, ^=38mm (2.5in) dia x 6mm (0.24in) thick
  • Tellurium,99.999%,pieces
  • Tellurium,99.8%,powder, 200 mesh
  • Tellurium standard solution,for AAS,1 mg/ml Te in 2% KOH
  • Tellurium, plasma standard solution, Specpure, Te 10g/ml
  • Tellurium atomic absorption standard solution,powder
  • Tellurium lump (metals basis)
  • Tellurium broken ingot (99.9996%)
  • Tellurium, Powder 22 Mesh 99.999%
  • TelluriuM Metal 99% Min., 99,96% Min.
  • TelluriuM, powder, (trace Metal basis)
  • TelluriuM, 99.8%, (trace Metal basis), powder, -200 Mesh
  • TelluriuM, powder, 200 Mesh, 99.8% 100GR
  • TelluriuM, powder, 200 Mesh, 99.8% 25GR
  • TelluriuM, reagent, powder, 99+% 10GR
  • TELLURIUM METAL
  • TELLERIUM
  • TELLURIUM AA SINGLE ELEMENT STANDARD
  • TELLURIUM, AAS STANDARD SOLUTION
  • TELLURIUM AA STANDARD
  • TELLURIUM ATOMIC ABSORPTION STANDARD
  • TELLURIUM ATOMIC ABSORPTION STANDARD SOLUTION
  • TELLURIUM BROKEN
  • TELLOY
  • TelluriumchunkN
  • Telluriumingotbrokenpieces
  • TelluriumpiecesN
  • TelluriumpowderNmesh
  • TellurStcke
  • TELLURIUM, -40 MESH, 99.997%
  • TELLURIUM, PIECES, 99.999%
  • TELLURIUM, POWDER, -200 MESH, 99.8%
  • TELLURIUM, GRANULES, -5+50 MESH, 99.99%
  • TELLURIUM, PIECES
  • TELLURIUM, INGOT, 99.999%
  • TELLURIUM, SHOT, 1-2MM, 99.999%
  • Tellurium(Metal)Powder99.9%
  • Tellurium, lump, zone refined, 99.999+%
  • Tellurium, ingot, broken pieces, 99.9999+%
  • Tellurium powder, 99.8%
  • TELLURIUM METAL POWDER
  • Tellurium standard solution, 1 mg/ml Te in 2% KOH, for AAS
  • Tellurium, powder, 200 mesh, 99.80%
  • Tellurium, reagent, powder, 99+%
  • TELLURIUM 99.999%
  • Telluriumbrokeningot(99.999%)
  • Telluriumbrokeningot(99.9999%)
  • Telluriumpowder(99.9%)
  • Telluriumpowder(99.999%)
  • MERCURIC CHLORIDE TS
  • Tellurium element
  • Tellurium shot, 1-2 mm, 99.999% trace metals basis
  • Tellurium lump, 99.999% trace metals basis