ChemicalBook > CAS DataBase List > TETRANITROMETHANE

TETRANITROMETHANE

Product Name
TETRANITROMETHANE
CAS No.
509-14-8
Chemical Name
TETRANITROMETHANE
Synonyms
TNM;tetan;NSC 16146;NCI-C55947;tetranitro-methan;TETRANITROMETHANE;tetranitromethane0;Methane,tetranitro-;rcrawastenumberp112;Tetranitromethane(R)
CBNumber
CB9236431
Molecular Formula
CN4O8
Formula Weight
196.03
MOL File
509-14-8.mol
More
Less

TETRANITROMETHANE Property

Melting point:
13-14 °C(lit.)
Boiling point:
126 °C(lit.)
Density 
1.637 g/mL at 25 °C(lit.)
vapor pressure 
8.4 mm Hg ( 20 °C)
refractive index 
n20/D 1.438(lit.)
Flash point:
>230 °F
storage temp. 
2-8°C
solubility 
Miscible with alcohol and ether (Hawley, 1981)
form 
liquid
Merck 
13,9305
Exposure limits
NIOSH REL: TWA 1 ppm, IDLH 4 ppm; OSHA PEL: TWA 5 ppb (adopted).
Dielectric constant
23.1(Ambient)
Stability:
Stability Oxidizer. Reacts with a wide variety of materials including organics, brass, zinc, cotton, sodium, pyridine, toluene, aluminium, finely powdered metals. Heat, friction and shock sensitive. May decompose or react with other chemicals violently.
CAS DataBase Reference
509-14-8(CAS DataBase Reference)
IARC
2B (Vol. 65) 1996
EPA Substance Registry System
Tetranitromethane (509-14-8)
More
Less

Safety

Hazard Codes 
O,T+
Risk Statements 
8-25-26-36/37/38-40
Safety Statements 
17-28-36/37-45
OEB
B
OEL
TWA: 1 ppm (8 mg/m3)
RIDADR 
UN 1510 5.1/PG 1
WGK Germany 
3
RTECS 
PB4025000
HazardClass 
5.1
PackingGroup 
I
Hazardous Substances Data
509-14-8(Hazardous Substances Data)
Toxicity
Acute oral LD50 for rats 130 mg/kg, mice 375 mg/kg (quoted, RTECS, 1985).
IDLA
4 ppm
More
Less

Hazard and Precautionary Statements (GHS)

Symbol(GHS)
Signal word
Danger
Hazard statements

H271May cause fire or explosion; strong oxidiser

H301Toxic if swalloed

H315Causes skin irritation

H319Causes serious eye irritation

H330Fatal if inhaled

H335May cause respiratory irritation

H351Suspected of causing cancer

Precautionary statements

P201Obtain special instructions before use.

P202Do not handle until all safety precautions have been read and understood.

P210Keep away from heat/sparks/open flames/hot surfaces. — No smoking.

P220Keep/Store away from clothing/…/combustible materials.

P221Take any precaution to avoid mixing with combustibles/…

P260Do not breathe dust/fume/gas/mist/vapours/spray.

P264Wash hands thoroughly after handling.

P264Wash skin thouroughly after handling.

P270Do not eat, drink or smoke when using this product.

P271Use only outdoors or in a well-ventilated area.

P280Wear protective gloves/protective clothing/eye protection/face protection.

P281Use personal protective equipment as required.

P283Wear fire/flame resistant/retardant clothing.

P284Wear respiratory protection.

P301+P310IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.

P302+P352IF ON SKIN: wash with plenty of soap and water.

P304+P340IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing.

P305+P351+P338IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.

P306+P360IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes.

P308+P313IF exposed or concerned: Get medical advice/attention.

P310Immediately call a POISON CENTER or doctor/physician.

P320Specific treatment is urgent (see … on this label).

P321Specific treatment (see … on this label).

P330Rinse mouth.

P332+P313IF SKIN irritation occurs: Get medical advice/attention.

P362Take off contaminated clothing and wash before reuse.

P370+P378In case of fire: Use … for extinction.

P371+P380+P375in case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion.

P403+P233Store in a well-ventilated place. Keep container tightly closed.

P405Store locked up.

P501Dispose of contents/container to..…

More
Less

N-Bromosuccinimide Price

Sigma-Aldrich
Product number
T25003
Product name
Tetranitromethane
Packaging
1G
Price
$55.8
Updated
2023/06/20
Sigma-Aldrich
Product number
T25003
Product name
Tetranitromethane
Packaging
5G
Price
$203
Updated
2023/06/20
More
Less

TETRANITROMETHANE Chemical Properties,Usage,Production

Description

Tetranitromethane (TNM) is a nitroalkane compound that is a colorless to pale-yellow liquid or solid (below 57 F) with a biting, pungent odor at room temperature. TNM is not known to occur as a natural product and is generated during the manufacture of trinitrotoluene (TNT) as an undesired byproduct that can be separated by means of its higher vapor pressure. It can be prepared by different reactions, the nitration of acetic anhydride or acetylene with nitric acid being the less problematic. It was synthesized in large amounts (as an industrial-scale production) for the first time in Germany during World War II during the development of the V2 rocket for use as a substitute for nitric acid in rocket fuel and due to the observation that its addition to diesel fuel increased the cetane number. A pilot-scale manufacture was set up by Nitroform Inc. (Newark, NJ, USA), but in 1953 was destroyed by an explosion. In 1994, TNM was produced by only one company in the United States and another one in Russia.

Chemical Properties

Tetranitromethane, a nitroparaffin, is a colorless to pale yellow liquid or solid with a pungent odor. It causes tears.

Physical properties

Colorless to pale yellow to yellow-orange liquid with a pungent odor. Sensitive to heat, friction, and shock. Explosive in presence of impurities.

Uses

Oxidizer in rocket propellants; explosive in admixture with toluene; reagent for detecting presence of double bonds in organic compounds.

Uses

Reagent for nitration of enol silyl ethers7 and aromatic compounds.8 Employed in the photooxidation of sulfides to sulfoxides.9

Uses

Oxidizer in rocket propellants. As explosive in admixture with toluene. To increase cetane number of diesel fuels. Reagent for detecting the presence of double bonds in organic Compounds and for mild nitrations. Has been proposed as irritant war gas.

Definition

ChEBI: Tetranitromethane is an organonitrogen compound.

General Description

A pale yellow liquid. Irritates skin and respiratory tract. Very toxic by inhalation. Difficult to ignite. Burns at a steady rate once ignited. Under prolonged exposure to fire or heat containers may rupture violently and rocket Produces toxic oxides of nitrogen during combustion.

Air & Water Reactions

Highly Flammable. Insoluble in water.

Reactivity Profile

Self-reactive. TETRANITROMETHANE is a weak, but highly sensitive explosive [Van Dolah 1967]. May decompose explosively if contaminated with combustible material. A propellant. Ignites upon contact with alcohols, amines, ammonia, beryllium alkyls, boranes, dicyanogen, hydrazines, hydrocarbons, hydrogen, nitroalkanes, powdered metals, silanes, or thiols [Bretherick 1979 p.174].

Hazard

Dangerous fire and explosion risk. Toxic by ingestion, inhalation, skin absorption. Eye and upper respiratory tract irritant. Upper respiratory tract cancer. Possible carcinogen.

Health Hazard

Acute effects include irritation of the eyes and respiratory passages and mild burns to the skin. After more prolonged inhalation, headache and respiratory distress may occur. After prolonged exposure, central nervous system, heart, liver, and kidney damage can occur as well as pulmonary edema.

Fire Hazard

Spontaneous chemical reaction may produce fire. Material is a strong oxidizer. The potential for explosion is severe, especially when exposed to heat or to powerful oxidizing or reducing agents; or when shocked or heated. TETRANITROMETHANE is more easily detonated than TNT. Impurities can also cause explosion. The material is highly sensitive; hydrocarbons exposed to TETRANITROMETHANE form exceedingly sensitive explosives. When heated to decomposition, TETRANITROMETHANE emits highly toxic fumes of oxides of nitrogen. Shock will explode it. Avoid hydrocarbons, aluminum, toluene, cotton, aromatic nitro compounds, alkalis, metals and rubber. Avoid impurities, shock, heat, and reducing agents.

Safety Profile

Confirmed carcinogen with carcinogenic and neoplastigenic data. Poison by ingestion, inhalation, intravenous, and intraperitoneal routes. Irritating to the skin, eyes, mucous membranes, and respiratory passages, and does serious damage to the liver. Mutation data reported. It occurs as an impurity in crude TNT, and is thought to be mainly responsible for the irritating properties of that material. It can cause pulmonary edema, mild methemoglobinemia, and fatty degeneration of the liver and hdneys. A powerful oxidizer. A very dangerous fire hazard. A severe explosion hazard when shocked or exposed to heat. May explode during distillation. Potentially explosive reaction with ferrocene, pyridine, sodium ethoxide. mxtures with amines (e.g., aniline) ignite spontaneously and may explode. Mixtures with cotton or toluene may explode when ignited. Forms sensitive and powerful explosive mixtures with nitrobenzene, l-nitrotoluene, 4-nitrotoluene, 1,3-dinitrobenzene, 1 -nitronaphthalene, other oxygen-deficient explosives, hydrocarbons. Can react vigorously with oxidizing materials. Incompatible with aluminum. When heated to decomposition it emits highly toxic fumes of NOx. Used as an oxidizer in rocket propellants and as an explosive. See also NITRATES; EXPLOSIVES, HIGH.

Potential Exposure

Tetranitromethane is used as a solvent for polymers and as a stabilizer; as an oxidizer in rocket propellant combinations. It is also used as an explosive in admixture with toluene.

Carcinogenicity

Tetranitromethane is reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in experimental animals.

Environmental Fate

TNM is almost insoluble in water (0.9 g l-1), and soluble in ethanol, carbon tetrachloride, diethyl ether, and alcoholic potassium hydroxide. Some other relevant physicochemical properties of TNM are the following: melting point 13.8°C, boiling point 126°C, estimated Koc value of 100, log Kow of 0.791, estimated Henry’s law constant of 2.4×103 atmm3 mol1 at 25°C, and its vapor pressure (8.42mmHg) is lesser than that of water.
Production and use of TNM may result in its release to the environment through various waste streams. The physical and chemical properties will lead to its fate in the environment. If released to air, TNM will exist solely as a vapor in the atmosphere and could be degraded by reaction with photochemically produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 31 days. TNM may be susceptible to direct photolysis. If released to soil, TNM is expected to have high mobility. It may volatilize from dry soil surfaces, and volatilization from moist soil surfaces is expected to be an important fate process. If released into water, TNM is not expected to adsorb to suspended solids and sediment, and volatilization from water surfaces is expected to be an important fate process (half-lives of 2 h and 6 days, for river and lake models, respectively). TNM is not expected to undergo hydrolysis in the environment due to the lack of functional groups that hydrolyze under environmental conditions. An estimated bioconcentration factor of 13 suggests the potential for bioconcentration in aquatic organisms is low.

Shipping

UN1510 Tetranitromethane, Hazard Class: 6.1; Labels: 6.1-Poison Inhalation Hazard, 5.1-Oxidizer, Inhalation Hazard Zone B.

Purification Methods

Shake tetranitromethane with dilute NaOH, wash, steam distil, dry with Na2SO4 and fractionally crystallise it by partial freezing. The melted crystals are dried with MgSO4 and fractionally distilled under reduced pressure. Alternatively, shake it with a large volume of dilute NaOH until no absorption attributable to the aci-nitro anion (from monodiand trinitromethanes) is observable in the water. Then wash it with distilled water, and distil it at room temperature by passing a stream of air or nitrogen through the liquid and condensing it in a trap at -80o. It can be dried with MgSO4 or Na2SO4, fractionally crystallised from the melt, and fractionally distilled under reduced pressure. [Liang Org Synth Coll Vol III 803 1955, Beilstein 4 H 80, 4 I 21, 4 II 45, 4 III 116, 4 IV 107.] Potentially explosive (when impure e.g. with toluene), toxic, carcinogenic.

Toxicity evaluation

TNM is a severe respiratory and eye irritant in humans and animals, although its precise mechanism of toxicity is unknown. TNM toxicity occurred predominantly in the respiratory tract, where it caused pulmonary edema, hemorrhage, and death at sufficiently high concentrations. Methemoglobinemia formation reported following oral administration may be a result of reduction of TNM in the gut. TNM selectively binds tyrosine residues in proteins and peptides and can inactivate various enzymes. In vitro data using rat alveolar macrophages suggested that nitration of cell membrane tyrosine residues and subsequent inhibition of tyrosine kinase pathways may be a mechanism of TNM toxicity.

Incompatibilities

Tetranitromethane is a powerful oxidizer. It is more easily detonated than TNT. Contact with hydrocarbons, alkalis, or metals form explosive mixtures. Contact with toluene or cotton may cause fire andexplosion. Combustible material wet with tetranitromethane may be highly explosive. The potential for explosion is severe, especially when exposed to heat, powerful oxidizers, or reducing agents; or, when subject to mild shock. Impurities can also cause explosives. Attacks some plastics, rubber and coatings.

Waste Disposal

Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal. Open burning at remote burning sites is not entirely satisfactory since it makes no provision for the control of the toxic effluents, nitrogen oxides and HCN. Suggested procedures are to employ modified closed pit burning, using blowers for air supply and passing the effluent combustion gases through wet scrubbers.

TETRANITROMETHANE Preparation Products And Raw materials

Raw materials

Preparation Products

More
Less

TETRANITROMETHANE Suppliers

509-14-8, TETRANITROMETHANERelated Search:


  • NSC 16146
  • NYTOUQBROMCLBJ-UHFFFAOYSA-N
  • Methane,tetranitro-
  • NCI-C55947
  • Rcra waste number P112
  • rcrawastenumberp112
  • tetan
  • tetranitro-methan
  • tetranitromethane0
  • TETRANITROMETHANE
  • TNM
  • Methane,tetranitro-(R)
  • Tetranitromethane(R)
  • Tetranitromethane(Technical)
  • 509-14-8
  • CNO24
  • CN4O8
  • Building Blocks
  • Organic Building Blocks
  • Nitrogen Compounds
  • Nitro Compounds
  • Aromatic Hydrocarbons (substituted) & Derivatives
  • Building Blocks
  • Chemical Synthesis
  • Nitro Compounds
  • Nitrogen Compounds
  • Organic Building Blocks