Basic information Safety Supplier Related

4-AMINOFOLIC ACID HYDRATE

Basic information Safety Supplier Related

4-AMINOFOLIC ACID HYDRATE Basic information

Product Name:
4-AMINOFOLIC ACID HYDRATE
Synonyms:
  • 4-AMINOFOLIC ACID HYDRATE
  • 4-AMINOPTEROYLGLUTAMIC ACID HYDRATE
  • AMINOPTERIN HYDRATE
MF:
C19H22N8O6
MW:
458.43
Mol File:
Mol File
More
Less

4-AMINOFOLIC ACID HYDRATE Chemical Properties

Melting point:
225 °C (dec.)(lit.)
More
Less

Safety Information

Hazard Codes 
T+
Risk Statements 
61-28
Safety Statements 
53-28-36/37-45
RIDADR 
UN 2811 6.1/PG 1
WGK Germany 
3
RTECS 
MA1050000

MSDS

More
Less

4-AMINOFOLIC ACID HYDRATE Usage And Synthesis

Originator

Aminopterin,Sigma Chemical Company

Manufacturing Process

2,4,5,6-Tetraaminopyrimidine·H2SO4·H2O (75.0 g, 0.293 mole) was added to a stirred solution of BaCl2·2H2O (71.5 g, 0.293 mole) in H2O (1.45 L) at 85- 90°C. The mixture was stirred rapidly at about 90°C for 15 min, cooled to 40°C, and filtered from BaSO4, which was washed thoroughly on a funnel withH2O. The clear, yellow filtrate was then diluted further with H2O to give a volume of 4.35 L. This solution of the tetraaminopyrimidine·2HCl was then added to a solution of NaOAc (4.35 L of 4 N) in which 1,3-dihydroxyacetone (79.3 g, 0.88 mole) and cysteine·HCl·H2O (51.5 g, 0.293 mole) had just been dissolved. The resulting solution was stirred mechanically at room temperature while a slow stream of air was continuously passed through it for 26 hours. (Yellow-orange solid began separating after 2 hours). The mixture was then kept in a refrigerator for 16 hours before the solid was collected, washed successively with cold H2O, EtOH, and Et2O before it was dried to constant weight in vacuo over P2O5 at 25°C. [The crude product mixture (47 g) was weighed in order to obtain an estimate of the volume of 48% HBr required to form hydrobromide salts]. A mechanically stirred mixture of the dried solid and EtOH (6.05 L) was heated to 70°C, and a solution of 48% HBr (28 ml) in EtOH (490 ml) was added in a thin stream while the mixture was maintained at 70-75°C. The mixture was then refluxed for about 5 min with rapid stirring while nearly all of the solid dissolved. The hot solution was treated with Norit and filtered through a Celite mat. The clear yellow filtrate was kept in a refrigerator overnight while a first crop of orange colored solid separated. The collected solid was washed with EtOH, then dried in vacuo (56°C over P2O5) to give 17.2 g of product. The filtrate was concentrated by evaporation (rotary evaporator) to about 2 L and then refrigerated to give a second crop of 10.2 g, which was dried as before; total yield of crude 2,4- diamino-6-pteridinemethanol hydrobromide 27.4 g (34%). The PMR spectrum of this material in CF3CO2D showed it to contain a barely detectable amount of methyl-substituted 2,4-diaminopteridine·HBr.
Bromine (59.6 g, 0.373 mole) was added dropwise over a 30 min to a stirred solution of triphenylphosphine (97.7 g, 0.373 mole) in anhydrous dimethylacetamide (486 ml) kept at 10°C (ice bath) and protected from atmospheric moisture. (Bromine remaining in the funnel was rinsed with 10 ml of dimethylacetamide). A smooth suspension containing finely divided, crystalline triphenylphosphine dibromide resulted. The 2,4-diamino-6- pteridinemethanol·HBr (25.4 g, 0.093 mole) described above was added in one portion through a powder funnel (with the aid of 10 ml dimethylacetamide). The ice bath was removed, and the stirred mixture was allowed to warm to 20-25°C. After about 1 hour, complete solution had occurred. The solution, which gradually developed a dark red color, was kept at 20-25°C for 1 hour longer and was then chilled (ice bath) before it was treated with EtOH (72 ml). After overnight refrigeration, the solvents were removed by evaporation in vacuo. The dark, semisolid residue was stirred with two 300 ml of C6H6 (to remove triphenylphosphine oxide), and each portion was removed from the C6H6 insoluble product by decantation. The solid that remained was dissolved with stirring in glacial AcOH (660 ml) which had been preheated to 80°C. The mixture was kept in a bath at 80°C until solution was complete. Tan crystalline solid separated as the dark solution was allowed to cool. Overnight refrigeration caused the AcOH to partially freeze. When it had thawed, the solid was collected, washed with chilled AcOH followed by Et2O, and dried in vacuo (over P2O5 and NaOH pellets) at successive temperatures of 25°C, 56°C, and 110°C. (The higher temperature was necessary for complete removal of AcOH). The yield was 15.3 g (49%). (Some runs afforded 60% yield). This sample was further purified by reprecipitation from MeOH solution (Norit) by addition of Et2O followed by drying in vacuo (25°C, P2O5), yield 13.0 g (42%) of 2,4-diamino-6-(bromomethyl)pteridine hydrobromide as A mixture of 2,4-diamino-6-(bromomethyl)pteridine hydrobromide (168 mg, 0.500 mmole) and N-(4-aminobenzoyl)-L-glutamic acid (400 mg, 1.50 mmoles) in dimethylacetamide (2 ml) was stirred at 25°C under N2 in a stoppered flask protected from light. Solution occurred after 2 hours. After 18 hours, the orange solution was mixed with H2O (15 ml) with stirring to give a finely divided, yellow precipitate. The mixture was centrifuged, and the supernatant removed by decantation. The yellow solid was stirred with four 15 ml portions of H2O, each of which was removed by decantation after centrifugation. The solid was then suspended in EtOH (15-20 ml), collected by filtration, washed with Et2O, and dried in vacuo (25°C, P2O5) to give hydrated N-[4-[[(2,4-diamino-6-pteridinyl)methyl]amino]benzoyl]-L-glutamic acid (Aminopterin) hydrate (4:7) in 68% yield (160 mg). Examination by TLC revealed one UV-absorbing spot and no fluorescence at any point.

Therapeutic Function

Antineoplastic

4-AMINOFOLIC ACID HYDRATESupplier

Riedel-de Haen AG
Tel
800 558-9160
More
Less

4-AMINOFOLIC ACID HYDRATE()Related Product Information