Overview Source and synthesis Applications References
ChemicalBook > CAS DataBase List > Pentadecanoic acid

Pentadecanoic acid

Overview Source and synthesis Applications References
Product Name
Pentadecanoic acid
CAS No.
1002-84-2
Chemical Name
Pentadecanoic acid
Synonyms
PENTADECYLIC ACID;C15:0;Pentadecanoate;N-PENTADECANOIC ACID;Pentadecanoic;1-PENTADECANOIC ACID;Pentadecanoic acid (C15);Pentadecanoic Acid(C15:0);Pentadecanoic (Palmitic) acid;14FA
CBNumber
CB7187490
Molecular Formula
C15H30O2
Formula Weight
242.4
MOL File
1002-84-2.mol
More
Less

Pentadecanoic acid Property

Melting point:
51-53 °C(lit.)
Boiling point:
257 °C100 mm Hg(lit.)
Density 
0.8423
refractive index 
1.4292
FEMA 
4334 | PENTADECANOIC ACID
Flash point:
>230 °F
storage temp. 
Store below +30°C.
solubility 
Soluble in ethanol.
form 
Powder or Flakes
pka
4.78±0.10(Predicted)
color 
White
Odor
waxy
Water Solubility 
12mg/L(20 ºC)
BRN 
1773831
Stability:
Stable. Combustible. Incompatible with bases, reducing agents, oxidizing agents.
LogP
6.62
CAS DataBase Reference
1002-84-2(CAS DataBase Reference)
EPA Substance Registry System
Pentadecanoic acid (1002-84-2)
More
Less

Safety

Hazard Codes 
Xi
Risk Statements 
36/37/38
Safety Statements 
26-36
WGK Germany 
3
RTECS 
RZ1925000
TSCA 
Yes
HS Code 
2915 90 70
Toxicity
LD50 ivn-mus: 54 mg/kg APTOA6 18,141,61
More
Less

Hazard and Precautionary Statements (GHS)

Symbol(GHS)
Signal word
Warning
Hazard statements

H315Causes skin irritation

H319Causes serious eye irritation

H335May cause respiratory irritation

H413May cause long lasting harmful effects to aquatic life

Precautionary statements

P261Avoid breathing dust/fume/gas/mist/vapours/spray.

P305+P351+P338IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.

More
Less

N-Bromosuccinimide Price

Sigma-Aldrich
Product number
P6125
Product name
Pentadecanoic acid
Purity
~99% (capillary GC)
Packaging
1g
Price
$50.8
Updated
2024/03/01
Sigma-Aldrich
Product number
91446
Product name
Pentadecanoic acid
Purity
analytical standard
Packaging
5g
Price
$143
Updated
2024/03/01
Sigma-Aldrich
Product number
8.00661
Product name
Pentadecanoic acid
Purity
for synthesis
Packaging
10g
Price
$142
Updated
2024/03/01
TCI Chemical
Product number
P0035
Product name
Pentadecanoic Acid
Purity
>98.0%(GC)(T)
Packaging
25g
Price
$94
Updated
2024/03/01
TCI Chemical
Product number
P0035
Product name
Pentadecanoic Acid
Purity
>98.0%(GC)(T)
Packaging
100g
Price
$278
Updated
2024/03/01
More
Less

Pentadecanoic acid Chemical Properties,Usage,Production

Overview

There is recently a considerable development in the understanding of lipids and their associations with disease, through disease etiology, biomarkers, treatment and prevention. To the present date, there have been over 150 different diseases connected with lipids, ranging from high blood pressure and artery plaques, obesity, type II diabetes, cancer and neurological disorders[1].
Fatty acids are the basic building blocks of more complex lipids[2] and their composition in different lipid species are often used as a means for comparison within a lipid class when examining disease and physiological perturbations in lipid metabolism. It has been shown that saturated fatty acids[3] are associated with increased relative risks for diseases such as coronary heart disease, atherosclerosis, fatty liver disease, inflammatory diseases and Alzheimer’s disease. In contrast many unsaturated fatty acids including both mono-unsaturated and poly-unsaturated, have been associated with a reduced risk for each of the previously described disorders in certain studies[4]. Fatty acid chain length is also used for the diagnosis and prognosis of disease with respect to adrenoleukodystrophy, Refsum disease and Zellweger Syndrome where the propagation of very long chain fatty acids (>22 Carbon length chain[5]) is indicative of these disorders[6].
Pentadecanoic acid (15:0), which originate from rumen microbial fermentation, is a kind of minor saturated fatty acid (FAs) in ruminant fat[7]. Its concentration in conventionally produced cow milk are on average 1.2% of total FAs, respectively. Concentrations in organically produced milk are somewhat higher[8]. 15:0 is accepted biomarkers for dairy fat intake[9], because its concentration in human plasma and RBCs increase with higher intake of dairy fat[10–13].
For instance, in the EPIC (European Prospective Investigation into Cancer and Nutrition)-InterAct case-cohort study, concentration of 15:0 in plasma phospholipids were on average 0.21% of total FAs, respectively[5]. Interestingly, 17:0 is present in plasma at approximately twice the concentration of 15:0 [reviewed in[14]] or even more in RBCs[4], the association with dairy fat intake is stronger for 15:0 than for 17:0[10, 12, 13].

Figure 1 the chemical structure of Pentadecanoic acid

Source and synthesis

The first possibility is synthesis from propionic acid (3:0) or other OCFAs shorter than 15:0. Fermentation of dietary fiber by the colonic microbiota is the primary source of SCFAs in humans, that is, acetic acid (2:0), propionic acid, and butyric acid (4:0). Most gut microbial propionic acid is absorbed and mostly metabolized by the liver[15]. Data from rodents show that feeding dietary fiber results in a measurable increase of both SCFAs, including propionic acid, and also of 15:0 in plasma phospholipids[16]. In the EPIC study, the OCFA concentrations in plasma phospholipids were also significantly associated with the intake of fruits and vegetables naturally rich in fibers[11]. The first evidence for an endogenous synthesis of 15:0 from (labeled) propionic acid was provided in subjects with the rare genetic disorders propionic acidemia (PA) and methylmalonic acidemia[17]. Normally, propionic acid is converted to propionyl-CoA and enters the citric acid cycle (CAC) at the level of succinyl-CoA. However, deficiencies of propionyl-CoA carboxylase or methylmalonyl-CoA mutase, respectively, block this pathway, leading to unusually high concentrations of 15:0 in a number of tissues[18, 19].
Another source of 15:0 may be phytosphingosine, also called dihydrosphingosine, a sphingoid base of glycosphingolipids. Phytosphingosine is degraded to 2-hydroxy hexadecanoic acid, which is finally a-oxidized to produce 15:0[20]. In fact, glycosphingolipids of the rat small intestine mucosa contain far more phytosphingosine than sphingosine[21]. However, the concentration in human tissues is not known. 15:0 may also be formed from hexadecanoic acid (16:0) after intermediate hydroxylation. This was observed in cultured differentiating adipocytes[22], as outlined before[14]. The relevance of this pathway in vivo is unknown.

Applications

The majority of research into fatty acid metabolism has been conducted primarily on even chain fatty acids (carbon chain length of 2–26) as these represent >99% of the total fatty acid plasma concentration in humans[13,14]. However, there is also a detectable amount of odd-chain fatty acids in human tissue. As a result of the low concentration there are only four significantly measureable odd chain fatty acids, which are C15:0, C17:0, C17:1[25] and C23:0[26]. C15:0 and C17:0; these have been gaining research interest within the scientific community as they have been found to be important as: (1) quantitative internal standards; (2) biomarkers for dietary food intake assessment; (3) biomarkers for coronary heart disease (CHD) risk and type II diabetes mellitus (T2D) risk (although the objective is not to provide a meta-analysis of odd chain saturated fatty acids (OCS-FAs) and disease risk); (4) evidence for theories of alternate endogenous metabolic pathways.
Quantitative internal standards
Since the early 1960s, it has been concluded that odd chain saturated fatty acids (OCS-FAs) are of little physiological significance[27–29] and that the only real difference with their more abundant counterparts, even chain fatty acids[24], is seen in the endpoint of metabolism where OCS-FAs result in propionyl CoA[29] as opposed to acetyl CoA[30]. Moreover, the OCS-FAs are present at apparently insignificant plasma concentrations[31] (<0.5% total plasma fatty acid concentration[32]) and the natural variation of concentrations within blood plasma ranging from 0%–1%.
Therefore, OCS-FAs can be used as low cost internal standards in quantitative analysis,
with C15:0 fatty acids being the most widely employed in this context. Many assumed that the concentration of OCS-FAs did not vary in different diseases and these lipid species were commonly used for standards in analyses[33,34]. The natural plasma variation of C15:0 could account for a 0.2%–3% variation in the Q-Int. Std response and therefore affecting the observed instrument abundance of the analytes. Furthermore, the use of these two OCS-FAs as quantitative internal standards does not allow them to be incorporated into any statistical analysis and therefore no correlations can be deduced. This is the main limiting factor to the amount of understand there is around the physiology of OCS-FAs.
Biomarkers for dietary food intake assessment
With the realization that OCS-FAs are in fact a biologically relevant component of blood plasma[35] there came further insights into their origin, either through consumption or through endogenous biosynthetic or metabolic pathways. This new direction of research interest led into the field of dietary analysis and the aim to identify lipidome variations[36] in relation to dietary intake[37].
OCS-FAs have attracted attention with research into the possible application of C15:0 in blood as a marker for intake of milk fat and subsequent relations between intake of milk fat with metabolic risk factors, the results in the first published study that focused on this showed that the proportions of C15:0 in cholesterol esters are associated with the total amount of fat from milk products (r = 0.46, p < 0.0001), based on 62 men[46].
Biomarkers for coronary heart disease (CHD) risk and type II diabetes mellitus (T2D) risk
In recent years, researches has been carried out in two key studies: The European Prospective Investigation into Cancer and Nutrition (EPIC) and The Norfolk Prospective Study[38]. The plasma samples of 1595 CHD cases and 2246 controls were used to extract plasma phospholipid fatty acids. The lipid extracts were measured by gas chromatography coupled to electron impact mass spectrometry and the concentrations were determined by peak comparison with an internal standard (di-palmitoyl-D31-phosphatidylcholine). The incidence of CHD was ascertained by the participant’s admission into hospital with a CHD diagnosis or death from CHD according to ICD9 410-414/ICD10 I22–I25. The results from this study clearly revealed saturated plasma phospholipid fatty acid, C14:0, C16:0, C18:0, concentrations were significantly associated with an increased risk of CHD. However, OCS-FAs concentrations of C15:0 and C17:0 showed a significant inverse association with CHD incidence, making them potential biomarkers of CHD.

References

  1. Reitz, C.; Tang, M.; Luchsinger, J.; Mayeux, R. Arch. Neurol. 2004, 61, 705–714.
  2. LIPID Maps. Available online: http://www.lipidmaps.org/ (accessed on 28 January 2015).
  3. Ulbricht, T.L.V.; Southgate, D.A.T. Lancet 1991, 338, 985–992.
  4. Simopoulos, A.P. Am. J. Clin. Nutr. 1991, 54, 438–463.
  5. Izai, K.; Uchida, Y.; Orii, T.; Yamamoto, S.; Hashimoto, T. J. Biol. Chem. 1992, 267, 1027–1033.
  6. Poulos, A.; Sharp, P.; Fellenberg, A.J.; Danks, D.M. Hum. Genet. 1985, 70, 172–177.
  7. Ratnayake WM. Am J Clin Nutr 2015;101:1102–3.
  8. Kusche D, Kuhnt K, Ruebesam K, Rohrer C, Nierop AF, Jahreis G, Baars T. J Sci Food Agric 2015;95:529–39.
  9. Yakoob MY, Shi P, Hu FB, Campos H, Rexrode KM, Orav EJ, Willett WC, Mozaffarian D. Am J Clin Nutr 2014;100:1437–47.
  10. Sun Q, Ma J, Campos H, Hu FB. Am J Clin Nutr 2007; 86:929–37.
  11. Forouhi NG, Koulman A, Sharp SJ, Imamura F, Kroger J, Schulze MB, Crowe FL, Huerta JM, Guevara M, Beulens JW, et al. Lancet Diabetes Endocrinol 2014;2:810–8.
  12. Golley RK, Hendrie GA. Ann Nutr Metab 2014;65:310–6.
  13. Allen NE, Grace PB, Ginn A, Travis RC, Roddam AW, Appleby PN, Key T. Br J Nutr 2008;99:653–9.
  14. Jenkins B, West JA, Koulman A. Molecules 2015;20:2425–44.
  15. Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K. Biochim Biophys Acta= 2010;1801:1175–83.
  16. Weitkunat K, Schumann S, Petzke KJ, Blaut M, Loh G, Klaus S. J Nutr Biochem 2015;26:929–37.
  17. Oizumi J, Giudici TA, Ng WG, Shaw KN, Donnell GN. Biochem Med 1981;26:28–40.
  18. Sperl W, Murr C, Skladal D, Sass JO, Suormala T, Baumgartner R,Wendel U. Eur J Pediatr 2000;159:54–8.
  19. Kishimoto Y, Williams M, Moser HW, Hignite C, Biermann K. J Lipid Res 1973;14:69–77.
  20. Dahiya R, Brasitus TA. Lipids 1986;21:112–6.
  21. Kondo N, Ohno Y, YamagataM, Obara T, Seki N, Kitamura T, Naganuma T, Kihara A. Nat Commun 2014;5: 5338.
  22. Roberts LD, Virtue S, Vidal-Puig A, Nicholls AW, Griffin JL. Physiol Genomics 2009;39:109–19.
  23. Hodson, L.; Skeaff, C.M.; Fielding, B.A. Prog. Lipid Res. 2008, 47, 348–380.
  24. Khaw, K.T.; Friesen, M.D.; Riboli, E.; Luben, R.; Wareham, N.PLoS Med. 2012, 9, e1001255.
  25. Çoker, M.; de Klerk, J.B.C.; Poll-The, B.T.; Huijmans, J.G.M.; Duran, M. J. Inherit. Metab. Dis. 1996, 19, 743–751.
  26. Phillips, G.B.; Dodge, J.T. J. Lipid Res. 1967, 8, 676–681.
  27. Horning, M.G.; Martin, D.B.; Karmen, A.; Vagelos, P.R. J. Biol. Chem. 1961, 236, 669–672.
  28. Mead, J.F.; Gabriel, M. Levis. A 1 J. Biol. Chem. 1963, 238, 1634–1636.
  29. Vanitallie, T.B.; Khachadurian, A.K. Science 1969, 165, 811–813.
  30. Jansen, G.A.; Ronald, J.A. Wanders. Alpha-oxidation. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2006, 1763, 1403–1412.
  31. Ferrannini, E.; Barrett, E.J.; Bevilacqua, S.; DeFronzo, R.A. J. Clin. Investig. 1983, 72, 1737–1747.
  32. Nestel, P.J.; Straznicky, N.; Mellett, N.A.; Wong, G.; De Souza, D.P.; Tull, D.L.; Barlow, C.K.; Grima, M.T.; Meikle, P.J. Am. J. Clin. Nutr. 2014, 99, 46–53.
  33. Tserng, K.Y.; Kliegman, R.M.; Miettinen, E.L.; Kalhan, S.C. J. Lipid Res. 1981, 22, 852–858.
  34. Persson, X.M.; Blachnio-Zabielska, A.U.; Jensen, M.D. J. Lipid Res. 2010, 51, 2761–2765.
  35. Baylin, A.; Kim, M.K.; Donovan-Palmer, A.; Siles, X.; Dougherty, L.; Tocco, P.; Campos, H. Fasting whole blood as a biomarker of essential fatty acid intake in epidemiologic studies: comparison with adipose tissue and plasma.Am. J. Epidemiol. 2005, 162, 373–381.
  36. Astrup, A. A changing view on saturated fatty acids and dairy: From enemy to friend. Am. J. Clin. Nutr. 2014, 100, 1407–1408.
  37. Seppänen-Laakso, T.; Oresic, M. How to study lipidomes. J. Mol. Endocrinol. 2009, 42, 185–190.
  38. Emmanuel, B. Biochim. Emmanuel, B. The relative contribution of propionate, and long-chain even-numbered fatty acids to the production of long-chain odd-numbered fatty acids in rumen bacteria. Biophys. Acta (BBA) Lipids Lipid Metab. 1978, 528, 239–246.

Description

Pentadecanoic acid is a saturated fatty acid. Its molecular formula is CH3(CH2)13COOH. It is rare in nature, being found at the level of 1.2 % in the milk fat from cows . The butterfat in cows milk is its major dietary source and it is used as a marker for butterfat consumption. Pentadecanoic acid also occurs in hydrogenated mutton fat.
Pentadecanoic acid may increase mother-to-child transmission of HIV through breastfeeding.

Chemical Properties

White solid; waxy aroma.

Occurrence

Reported found in Herniaria incana lam. oil Greece (0.30%), Glycosmis pentaphylla (cor.) bark oil India (0.20%), Thevetia peruviana (pers.) K. Schum. flower oil Brazil (0.20%), and thyme oil Spain (0.10%).

Uses

Pentadecanoic acid is a saturated fatty acid. Pentadecanoic acid was utilized as a biomarker to examine for the intake of milk fat in relation to its metabolic risk factors. Pentadecanoic Acid that is also produced by certain plant species and acts as an toxic essential oil, which is known to exhibits potential anxiolytic, antinociceptive and antimicrobial properties.

Definition

ChEBI: Pentadecanoic acid is a straight-chain saturated fatty acid containing fifteen-carbon atoms. It has a role as a plant metabolite, a food component, a Daphnia magna metabolite, a human blood serum metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a pentadecanoate.

Aroma threshold values

Medium strength odor

Synthesis Reference(s)

Tetrahedron Letters, 24, p. 4993, 1983 DOI: 10.1016/S0040-4039(01)99830-2

General Description

Pentadecanoic acid is a saturated fatty acid, commonly present in ox bile. It is present as a phytochemical component of Indigofera suffruticosa leaves and is known to exhibit antimicrobial and antioxidant properties.

Safety Profile

Poison by intravenous route. When heated to decomposition it emits acrid smoke and irritating fumes.

Purification Methods

Crystallise the acid from Et2O and distil it in vacuo. It is very hygroscopic. See the purification of palmitic acid. [Beilstein 2 IV 1147.]

Pentadecanoic acid Preparation Products And Raw materials

Raw materials

Preparation Products

More
Less

Pentadecanoic acid Suppliers

BOC Sciences
Tel
1-631-485-4226; 16314854226
Email
info@bocsci.com
Country
United States
ProdList
14055
Advantage
65
TargetMol Chemicals Inc.
Tel
+1-781-999-5354 +1-00000000000
Email
marketing@targetmol.com
Country
United States
ProdList
32165
Advantage
58
Alfa Chemistry
Tel
Fax
1-516-927-0118
Email
Info@alfa-chemistry.com
Country
United States
ProdList
24072
Advantage
58
Aladdin Scientific
Tel
+1-+1(833)-552-7181
Email
sales@aladdinsci.com
Country
United States
ProdList
52925
Advantage
58
Aladdin Scientific
Tel
+1-+1(833)-552-7181
Email
sales@aladdinsci.com
Country
United States
ProdList
57505
Advantage
58
TargetMol Chemicals Inc.
Tel
Email
support@targetmol.com
Country
United States
ProdList
38632
Advantage
58
Cayman Chemical Company
Tel
--
Fax
--
Email
cayman@caymanchem.com
Country
United States
ProdList
6213
Advantage
81
Penta Manufacturing Company (a division of Penta International Corporation)
Tel
--
Fax
--
Email
@pentamfg.com
Country
United States
ProdList
901
Advantage
58
MilliporeSigma (Sigma-Aldrich Corp.)
Tel
--
Fax
--
Email
@sial.com
Country
United States
ProdList
5414
Advantage
58
Alichem Inc.
Tel
--
Fax
--
Email
sales@alichem.com
Country
United States
ProdList
6167
Advantage
58
Nu-Chek-Prep, Inc.
Tel
--
Fax
--
Email
info@nuchekprep.com
Country
United States
ProdList
21
Advantage
58
Selleck Chemicals LLC
Tel
--
Fax
--
Email
sales@selleckchem.com
Country
United States
ProdList
1848
Advantage
58
TCI America, Inc. (part of Tokyo Chemical Industry)
Tel
--
Fax
--
Email
Angelina.Crew@tcichemicals.com
Country
United States
ProdList
2053
Advantage
58
Oakwood Products, Inc.
Tel
--
Fax
--
Email
sales@oakwoodchemical.com
Country
United States
ProdList
6193
Advantage
74
United States Biological
Tel
--
Fax
--
Email
chemicals@usbio.net
Country
United States
ProdList
6214
Advantage
80
Lluch Essence S.L.
Tel
--
Fax
--
Email
web@lluche.com
Country
United States
ProdList
2352
Advantage
58
Penta International Corporation
Tel
--
Fax
--
Email
lisaa@pentamfg.com
Country
United States
ProdList
5042
Advantage
58
TCI America
Tel
--
Fax
--
Email
sales@tciamerica.com
Country
United States
ProdList
6909
Advantage
75
MedChemExpress
Tel
--
Fax
--
Email
sales@medchemexpress.com
Country
United States
ProdList
6398
Advantage
58
Combi-Blocks Inc.
Tel
--
Fax
--
Email
sales@combi-blocks.com
Country
United States
ProdList
6618
Advantage
69
Riedel-de Haen AG
Tel
--
Fax
--
Country
United States
ProdList
6773
Advantage
87
Cambridge Isotope Laboratories, Inc.
Tel
--
Fax
--
Email
cilsales@isotope.com
Country
United States
ProdList
6598
Advantage
79
ChemService Inc.
Tel
--
Fax
--
Country
United States
ProdList
6379
Advantage
68
Narchem Corporation
Tel
--
Fax
--
Email
sales@narchem.com
Country
United States
ProdList
2813
Advantage
60
Penta Manufacturing Company
Tel
--
Fax
--
Email
sales@pentamfg.com
Country
United States
ProdList
5076
Advantage
65
INDOFINE Chemical Company, Inc.
Tel
--
Fax
--
Email
chemical@indofinechemical.com
Country
United States
ProdList
6176
Advantage
69
Advance Scientific & Chemical
Tel
--
Fax
--
Email
sales@advance-scientific.com
Country
United States
ProdList
6419
Advantage
71
3B Scientific Corporation
Tel
--
Fax
--
Email
sales@3bsc.com
Country
United States
ProdList
6718
Advantage
47
HONEST JOY HOLDINGS LIMITED
Tel
--
Fax
--
Email
sales@honestjoy.cn
Country
United States
ProdList
6675
Advantage
54
Sciencelab.com, Inc.
Tel
--
Fax
--
Email
accounting@sciencelab.com
Country
United States
ProdList
4159
Advantage
82
Medical Isotopes
Tel
--
Fax
--
Email
stohler@medicalisotopes.com
Country
United States
ProdList
6181
Advantage
68
Spectrum Chemicals & Laboratory Products
Tel
--
Fax
--
Email
sales@spectrumchemical.com
Country
United States
ProdList
6699
Advantage
77
Crescent Chemical Co., Inc.
Tel
--
Fax
--
Email
sales@creschem.com
Country
United States
ProdList
4597
Advantage
68
MP Biomedicals, Inc.
Tel
--
Fax
--
Country
United States
ProdList
6561
Advantage
81
Alfa Aesar
Tel
--
Fax
--
Email
tech@alfa.com
Country
United States
ProdList
6814
Advantage
81
City Chemicals Corporation
Tel
--
Fax
--
Country
United States
ProdList
6460
Advantage
72
Nu Chek Prep, Inc.
Tel
--
Fax
--
Email
nuchek@my clearwave.net
Country
United States
ProdList
811
Advantage
64
Eastern Chemical Corp.
Tel
--
Fax
--
Email
eastern@u-g.com
Country
United States
ProdList
2786
Advantage
34
Alltech Associates, Inc.
Tel
--
Fax
--
Email
alltech@alltechemail.com
Country
United States
ProdList
419
Advantage
60
Pfaltz & Bauer, Inc.
Tel
--
Fax
--
Email
sales@pfaltzandbauer.com
Country
United States
ProdList
6828
Advantage
72
Research Plus, Inc.
Tel
--
Fax
--
Email
respls@aol.com
Country
United States
ProdList
3674
Advantage
51
Matreya LLC
Tel
--
Fax
--
Email
customerservice@matreya.com
Country
United States
ProdList
384
Advantage
62
ASDI Incorporated
Tel
--
Fax
--
Email
customerservice@asdi.net
Country
United States
ProdList
6922
Advantage
67
Chem-Impex International, Inc.
Tel
--
Fax
--
Country
United States
ProdList
6730
Advantage
64
More
Less

View Lastest Price from Pentadecanoic acid manufacturers

HebeiShuoshengImportandExportco.,Ltd
Product
PENTADECANOIC ACID 1002-84-2
Price
US $6.00/kg
Min. Order
1kg
Purity
99%
Supply Ability
2000KG/Month
Release date
2024-08-09
Hebei Longbang Technology Co., Ltd
Product
PENTADECANOIC ACID 1002-84-2
Price
US $6.00/KG
Min. Order
1KG
Purity
99%
Supply Ability
20TONS
Release date
2024-04-28
Hebei Jingbo New Material Technology Co., Ltd
Product
PENTADECANOIC ACID 1002-84-2
Price
US $0.00/kg
Min. Order
1kg
Purity
99%
Supply Ability
1000000
Release date
2023-12-22

1002-84-2, Pentadecanoic acidRelated Search:


  • 1-PENTADECANOIC ACID
  • RARECHEM AL BO 0368
  • TETRADECANE-1-CARBOXYLIC ACID
  • PENTADECYCLIC ACID
  • PENTADECYLIC ACID
  • PENTADECANOIC ACID
  • N-PENTADECYLIC ACID
  • N-PENTADECANOIC ACID
  • CARBOXYLIC ACID C15
  • C15:0 FATTY ACID
  • C15 ACID
  • n-Pentadecansαure
  • Pentadecanoic (Palmitic) acid
  • Pentadecanoic acid (Pentadecylic acid)
  • 14FA
  • NSC 28486
  • Pentadecanoic acid (C15)
  • PENTADECANOIC ACID FOR SYNTHESIS
  • C15:0
  • Pentadecanoate
  • Pentadecanoic
  • Pentadecanoic Acid(C15:0)
  • Pentadecansαure
  • Pentadecylsαure
  • PENTADECANOIC ACID, 99+%
  • n-Pentadecanoic acid, 98+%
  • n-Pentadecanoic acid,99%
  • PentadecanoicAcid&gt
  • pentadecanoicaci
  • C15:0 Pentadecanoic
  • C15973740 PentadecanoiCacid
  • 1002-84-2
  • 1002842
  • CD3CH213COOH
  • CH3CH213COOH
  • CARBOXYLIC ACID
  • Organic Building Blocks
  • Lipids
  • Fatty Acids
  • PA - PEN
  • Straight chain fatty acids
  • Saturated fatty acids and derivatives
  • C13 to C42+
  • Carboxylic Acids
  • Carbonyl Compounds
  • Analytical Chromatography Product Catalog
  • Alphabetic
  • BioChemical
  • Building Blocks
  • Biochemicals and Reagents
  • Analytical Standards
  • Monofunctional Alkanes
  • Monofunctional & 伪,蠅-Bifunctional Alkanes
  • Alkylcarboxylic Acids
  • Saturated Higher Fatty Acids
  • Higher Fatty Acids & Higher Alcohols
  • Alkylcarboxylic Acids
  • Biochemistry