Description Sources
ChemicalBook > CAS DataBase List > Chrysene

Chrysene

Description Sources
Product Name
Chrysene
CAS No.
218-01-9
Chemical Name
Chrysene
Synonyms
Crysene;CHRYSEN;Chrycene;NSC 6175;CHRYSENE;Chrysene,98%;Chrysene,90%;[4]Phenacene;CHRYSENE PURUM;Chrysene Standard
CBNumber
CB9853344
Molecular Formula
C18H12
Formula Weight
228.29
MOL File
218-01-9.mol
More
Less

Chrysene Property

Melting point:
252-254 °C (lit.)
Boiling point:
448 °C (lit.)
Density 
1.274
vapor pressure 
4.3 at 25 °C (de Kruif, 1980)
refractive index 
1.7480 (estimate)
Flash point:
-17℃
storage temp. 
Store below +30°C.
solubility 
<0.0001g/l
form 
neat
Water Solubility 
insoluble
Merck 
14,2255
BRN 
1909297
Henry's Law Constant
1.97, 6.91, 18.8, 52.3, and 118 at 4.1, 11.0, 18.0, 25.0, and 31.0 °C, respectively (Bamford et al., 1998)
Stability:
Stable. Combustible. Incompatible with strong oxidizing agents.
InChIKey
WDECIBYCCFPHNR-UHFFFAOYSA-N
CAS DataBase Reference
218-01-9(CAS DataBase Reference)
IARC
2B (Vol. 92) 2010
NIST Chemistry Reference
Chrysene(218-01-9)
EPA Substance Registry System
Chrysene (218-01-9)
More
Less

Safety

Hazard Codes 
T,N,Xn,F
Risk Statements 
45-50/53-68-40-67-66-36-11-52/53-36/37/38
Safety Statements 
53-45-60-61-36/37-26-16-24/25-23
RIDADR 
UN 3077 9/PG 3
WGK Germany 
3
RTECS 
GC0700000
HazardClass 
9
PackingGroup 
III
HS Code 
29029090
Hazardous Substances Data
218-01-9(Hazardous Substances Data)
Toxicity
Acute LC50 for Neanthes arenaceodentata >50 μg/L (Rossi and Neff, 1978).
More
Less

Hazard and Precautionary Statements (GHS)

Symbol(GHS)
Signal word
Danger
Hazard statements

H225Highly Flammable liquid and vapour

H319Causes serious eye irritation

H336May cause drowsiness or dizziness

H341Suspected of causing genetic defects

H350May cause cancer

H351Suspected of causing cancer

H410Very toxic to aquatic life with long lasting effects

H412Harmful to aquatic life with long lasting effects

Precautionary statements

P201Obtain special instructions before use.

P202Do not handle until all safety precautions have been read and understood.

P210Keep away from heat/sparks/open flames/hot surfaces. — No smoking.

P273Avoid release to the environment.

P280Wear protective gloves/protective clothing/eye protection/face protection.

P281Use personal protective equipment as required.

P391Collect spillage. Hazardous to the aquatic environment

P308+P313IF exposed or concerned: Get medical advice/attention.

P405Store locked up.

P501Dispose of contents/container to..…

More
Less

N-Bromosuccinimide Price

Sigma-Aldrich
Product number
49478-U
Product name
Chrysene
Packaging
u
Price
$18.5
Updated
2018/11/20
Sigma-Aldrich
Product number
40074
Product name
Chrysene solution
Purity
certified reference material, 1000?μg/mL in acetone
Packaging
1 mL
Price
$32.7
Updated
2021/03/22
Sigma-Aldrich
Product number
35754
Product name
Chrysene
Purity
analytical standard
Packaging
100mg
Price
$102
Updated
2021/03/22
TCI Chemical
Product number
C0339
Product name
Benzo[a]phenanthrene (purified by sublimation)
Purity
>98.0%(GC)
Packaging
1g
Price
$269
Updated
2021/03/22
TCI Chemical
Product number
C0339
Product name
Benzo[a]phenanthrene (purified by sublimation)
Purity
>98.0%(GC)
Packaging
100mg
Price
$90
Updated
2021/03/22
More
Less

Chrysene Chemical Properties,Usage,Production

Description

Chrysene is a polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings. Some of its derivatives such as electroluminescent 3, 6, 9, 12-tetrasubstituted chrysenes are useful in electroluminescent applications such as being used in the organic light emitting dioxide (OLED). They are also relates to electronic devices in which the active layer includes such a chrysene composition. Chrysene is a potential carcinogen.

Sources

Tokito, Shizuo, et al. Applied Physics Letters 77.2(2000):160-162.
Gao, Weiying, D. T. Deibler, and V. Rostovtsev. "Chrysene derivative host materials." US, US8932733. 2015.
Ionkin, Alex Sergey. "Tetra-substituted chrysenes for luminescent applications." US, US8115378. 2012.
https://en.wikipedia.org/wiki/Chrysene

Description

Chrysene is a polycyclic aromatic hydrocarbon (PAH) with the molecular formula C18H12. It is one of the natural constituents in coal tar, from which it was first isolated and characterized. It is produced as a gas during combustion of coal, gasoline, garbage, animal, and plant materials and usually found in smoke and soot. Chrysene usually combines with dust particles in the air and is carried into water and soil and onto crops. Creosote, a chemical used to preserve wood contains chrysene. High concentration of chrysene in the air is typically found during open burning and home heating with wood and coal. People are exposed to chrysene from a variety of environmental sources such as air, water, and soil and from cigarette smoke and cooked food. General population is usually exposed to chrysene along with a mixture of similar chemicals. Chrysene is a by-product of many industrial processes and thereby released in the atmosphere. Chrysene is lipophilic, insoluble in water, slightly soluble in other polar solvents such as alcohol, ether and moderately soluble in benzene and toluene. However, it readily dissolves in benzene and toluene at an elevated temperature. The name ‘Chrysene’ originates from the Greek word chrysos, meaning ‘gold,’ and is due to the golden yellow color of the slightly impure crystals. However, in pure state, chrysene is a colorless, crystalline solid. It has characteristic red–blue fluorescence under UV light. Some important properties of chrysene are summarized below.

Chemical Properties

crystalline powder

Chemical Properties

Chrysene is a combustible, white (when pure), red, or blue, fluorescent crystalline solid. Odorless. Chrysene 859 Polycyclic aromatic hydrocarbons (PAHs) are compounds containing multiple benzene rings and are also called polynuclear aromatic hydrocarbons

Physical properties

Orthorhombic, bipyramidal plates from benzene exhibiting strong reddish-blue fluorescence under UV light

Uses

Organic synthesis.

Uses

Laboratory reagent; formed during the pyrolysis of organic matter

Uses

Used strictly for research purposes.

Synthesis Reference(s)

Tetrahedron Letters, 29, p. 3865, 1988 DOI: 10.1016/S0040-4039(00)82136-X

General Description

A crystalline solid. Denser than water and insoluble in water. The primary hazard is the threat to the environment. Immediate steps should be taken to limit spread to the environment. Toxic by ingestion. Used to make other chemicals.

Air & Water Reactions

Insoluble in water.

Reactivity Profile

Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic hydrocarbons, such as Chrysene, and strong oxidizing agents. They can react exothermically with bases and with diazo compounds. Substitution at the benzene nucleus occurs by halogenation (acid catalyst), nitration, sulfonation, and the Friedel-Crafts reaction.

Hazard

Possible carcinogen.

Health Hazard

There is very little information published onthe acute toxicity of chrysene. The oral toxicity is expected to be low. Animal studies showsufficient evidence of carcinogenicity. It produced skin cancer in animals. Subcutaneousadministration of chrysene in mice causedtumors at the site of application. Cancer-causing evidence in humans is not known. Ahistidine reversion–Ames test for mutagenicity showed positive.

Health Hazard

ACUTE/CHRONIC HAZARDS: Toxic.

Fire Hazard

Some may burn but none ignite readily. Containers may explode when heated. Some may be transported hot.

Safety Profile

Confirmed carcinogen with experimental carcinogenic, neoplastigenic, and tumorigenic data by skin contact. Human mutation data reported. When heated to decomposition it emits acrid smoke and fumes.

Potential Exposure

Almost never found by itself, chrysene is found in gasoline and diesel exhaust as well as in cigarette smoke; and in coal tar; coal tar pitch; creosote. It is used in organic synthesis.

Carcinogenicity

The IARC has determined that there is limited evidence that chrysene is carcinogenic to experimental animals.ACGIH has classified chrysene as a confirmed animal carcinogen with unknown relevance to humans; a numerical threshold limit value (TLV) is not recommended.

Source

Identified in Kuwait and South Louisiana crude oils at concentrations of 6.9 and 17.5 ppm, respectively (Pancirov and Brown, 1975). Also present in high octane gasoline (6.7 mg/kg), bitumen (1.64–5.14 ppm), gasoline exhaust (27–318 μg/m3), cigarette smoke (60 μg/1,000 cigarettes), and South Louisiana crude oil (17.5 ppm) (quoted, Verschueren, 1983). Also detected in fresh motor oil (56 mg/L), used motor oil (10.17 mg/L) (Pasquini and Monarca, 1093).
Detected in groundwater beneath a former coal gasification plant in Seattle, WA at a concentration of 10 μg/L (ASTR, 1995). The concentration of chrysene in coal tar and the maximum concentration reported in groundwater at a mid-Atlantic coal tar site were 3,600 and 0.0063 mg/L, respectively (Mackay and Gschwend, 2001). Based on laboratory analysis of 7 coal tar samples, chrysene concentrations ranged from 620 to 5,100 ppm (EPRI, 1990). Chrysene was also detected in 9 commercially available creosote samples at concentrations ranging from 19 to 620 mg/kg (Kohler et al., 2000).
Identified in high-temperature coal tar pitches used in roofing operations at concentrations ranging from 2,600 to 88,000 mg/kg (Arrendale and Rogers, 1981; Malaiyandi et al., 1982).
Chrysene was detected in asphalt fumes at an average concentration of 115.67 ng/m3 (Wang et al., 2001).
Under atmospheric conditions, a low rank coal (0.5–1 mm particle size) from Spain was burned in a fluidized bed reactor at seven different temperatures (50 °C increments) beginning at 650 °C. The combustion experiment was also conducted at different amounts of excess oxygen (5 to 40%) and different flow rates (700 to 1,100 L/h). At 20% excess oxygen and a flow rate of 860 L/h, the amount of chrysene emitted ranged from 127.9 ng/kg at 950 °C to 1,186.0 ng/kg at 750 °C. The greatest amount of PAHs emitted were observed at 750 °C (Mastral et al., 1999).

Environmental Fate

Biological. When chrysene was statically incubated in the dark at 25 °C with yeast extract and settled domestic wastewater inoculum, significant biodegradation with varied adaptation rates was observed. At concentrations of 5 and 10 mg/L, 59 and 38% biodegradation, respectively, were observed after 28 d (Tabak et al., 1981).
Soil. The reported half-lives for chrysene in a Kidman sandy loam and McLaurin sandy loam are 371 and 387 d, respectively (Park et al., 1990).
Surface Water. In a 5-m deep surface water body, the calculated half-lives for direct photochemical transformation at 40 °N latitude, in the midsummer during midday were 13 h and 68 d with and without sediment-water partitioning, respectively (Zepp and Schlotzhauer, 1979).
Photolytic. Based on structurally related compounds, chrysene may undergo photolysis to yield quinones (U.S. EPA, 1985) and/or hydroxy derivatives (Nielsen et al., 1983). The atmospheric half-life was estimated to range from 0.802 to 8.02 h (Atkinson, 1987). Behymer and Hites (1985) determined the effect of different substrates on the rate of photooxidation of chrysene using a rotary photoreactor. The photolytic half-lives of chrysene using silica gel, alumina, and fly ash were 100, 78, and 38 h, respectively.

Shipping

UN3077 Environmentally Hazardous substances, solid, n.o.s., Hazard class: 9; Labels: 9-Miscellaneous hazardous material, Technical Name Required.

Purification Methods

Purify chrysene by chromatography on alumina from pet ether in a darkened room. Its solution in *C6H6 is passed through a column of decolorising charcoal, then crystallised by concentrating the eluate. It has also been purified by crystallising from *C6H6 or *C6H6/pet ether, and by zone refining. [Gorman et al. J Am Chem Soc 107 4404 1985]. It is freed from 5H-benzo[b]carbazole by dissolving it in N,N-dimethylformamide and successively adding small portions of alkali and iodomethane until the fluorescent colour of the carbazole anion no longer appears when alkali is added. The chrysene (and alkylated 5H-benzo[b]carbazole) separate on addition of water. Final purification is by crystallisation from ethylcyclohexane and/or from 2-methoxyethanol [Bender et al. Anal Chem 36 1011 1964]. It can be sublimed in a vacuum. [Beilstein 5 IV 2554.]

Toxicity evaluation

Generally, disposal of PAH from the industrial plants, accidental release from the containers, smoke from plant, combustion, or automobile exhaust causes chrysene and other PAHs to enter the environment. Because of the poor water solubility and low vapor pressure, chrysene has limited chance to get washed away or evaporate in the environment. Therefore, it remains immobile in soils. If exposed to water, it gets absorbed on the particulate matters and either float or sediment on the riverbed. The rate of biodegradation in soil ranges from 77 to 387 days depending on the soil type.Chrysene does not undergo hydrolysis due to the lack of hydrolyzable functional groups. However, it undergoes photochemical oxidations when exposed to the environment. Dihydrodiol is the common degradation product of chrysene. Half-life of degradation of chrysene, absorbed to soot particles and exposed to sunlight in air containing 10 ppm nitrogen oxides is 26 days. The National Research Council (NRC 1983) noted that the PAHs adsorbed to soot particles are more resistant to photochemical reactions than pure compounds.

Incompatibilities

Contact with strong oxidizers may cause fire and explosion hazard

Waste Disposal

Chrysene may be destroyed by permanganate oxidation, by high-temperature incinerator with scrubbing equipment; or by microwave plasma treatment.

Chrysene Preparation Products And Raw materials

Raw materials

Preparation Products

More
Less

Chrysene Suppliers

Xi’an ODER photoelectric materials Co., Ltd
Tel
029-81125951-
Fax
029-81125632
Email
Market@xaoder.com
Country
China
ProdList
113
Advantage
58
Sino-Biochemical Laboratory Co., Ltd.
Tel
21-31590156-
Fax
+86 21 31590152
Email
sales@sino-biochemlab.com
Country
China
ProdList
295
Advantage
58
J & K SCIENTIFIC LTD.
Tel
010-82848833- ;010-82848833-
Fax
86-10-82849933
Email
jkinfo@jkchemical.com;market6@jkchemical.com
Country
China
ProdList
96815
Advantage
76
Meryer (Shanghai) Chemical Technology Co., Ltd.
Tel
21-61259100-
Fax
86-21-61259102
Email
sh@meryer.com
Country
China
ProdList
40264
Advantage
62
INTATRADE GmbH
Tel
+49 3493/605464
Fax
+49 3493/605470
Email
sales@intatrade.de
Country
Germany
ProdList
3579
Advantage
66
Chembest Research Laboratories Limited
Tel
021-20908456-
Fax
021-58180499
Email
sales@BioChemBest.com
Country
China
ProdList
5948
Advantage
61
TCI (Shanghai) Development Co., Ltd.
Tel
021-67121386 / 800-988-0390
Fax
021-67121385
Email
Sales-CN@TCIchemicals.com
Country
China
ProdList
24555
Advantage
81
BeiJing Hwrk Chemicals Limted
Tel
0757-86329057-
Fax
0757-86311057
Email
sales.gd@hwrkchemical.com
Country
China
ProdList
17295
Advantage
55
Energy Chemical
Tel
021-58432009-
Fax
021-58436166
Email
sales8178@energy-chemical.com
Country
China
ProdList
43503
Advantage
61
JinYan Chemicals(ShangHai) Co.,Ltd.
Tel
13817811078;021-50426030
Fax
86-021-50426522,50426273
Email
sales@jingyan-chemical.com
Country
China
ProdList
10006
Advantage
60
More
Less

View Lastest Price from Chrysene manufacturers

Wuhan wingroup Pharmaceutical Co., Ltd
Product
Chrysene 218-01-9
Price
US $5.00/KG
Min. Order
1KG
Purity
99%
Supply Ability
100 Tons
Release date
2021-07-12
Zhuozhou Wenxi import and Export Co., Ltd
Product
Chrysene 218-01-9
Price
US $15.00-10.00/KG
Min. Order
1KG
Purity
99%+ HPLC
Supply Ability
Monthly supply of 1 ton
Release date
2021-07-10
Zhuozhou Wenxi import and Export Co., Ltd
Product
Chrysene 218-01-9
Price
US $15.00-10.00/KG
Min. Order
1KG
Purity
99%+ HPLC
Supply Ability
Monthly supply of 1 ton
Release date
2021-07-08

218-01-9, ChryseneRelated Search:


  • Chrycene
  • Chrysene,90%
  • Chrysene,98%
  • Chrysene in Methanol
  • [4]Phenacene
  • NSC 6175
  • DI-POT.HYDROGEN PHOSPHATE 3-HYDRATE
  • Chrysene Standard
  • Benzo[a]phenanthrene (purified by sublimation)
  • 1,2-Benzophenanthrene
  • 1,2-Benzphenanthrene
  • Benz(a)phenanthrene
  • benzo(a)phenanthrene(chrysene)
  • Benzo[a]Phenanthrenee
  • coaltarpitchvolatiles:chrysene
  • Crysene
  • Rcra waste number U050
  • rcrawastenumberu050
  • 1,2,5,6-dibenzonaphthalene
  • 1,2-benzophenanthracene
  • CHRYSENE
  • CHRYSEN
  • BENZO[A]PHENANTHRENE
  • BENZO[ALPHA]PHENANTHRENE
  • Chrysene (purity)
  • CHRYSENE OEKANAL, 100 MG
  • CHRYSENE 100MG NEAT
  • CHRYSENE ZONE-REFINED 98%
  • CHRYSENE PURUM
  • 45248, Chrysene (purity)
  • CHRYSENE, 1X1ML, CH2CL2, 200UG/ML
  • CHRYSENE, 1X1ML, ACET, 1000UG/ML
  • 2,2-DIMETHYLPHENYLPROPANONE
  • 1,2-benzophenanthrene1.1.1-trichloro-2-methyl-2-propanolbenzo(a)phenanthrene
  • chrysene solution
  • Chrysene @2.0 mg/mL in Dichloromethane
  • ChryseneSolution,200mg/L,1ml
  • Chrysene@0.5 mg/mL in Acetonitrile
  • Chrysene@50 μg/mL in Toluene
  • ChryseneSolution,100mg/L,1ml
  • Benzo[a]phenanthrene (purified by sublimation) &gt
  • ChryseneSolution,1000mg/L,1mL
  • Chrysenesolution,500mg/L,1mL
  • ChryseneSolution,100mg/L,5ml
  • ChryseneSolution,10mg/L,1ml
  • Chrysene @0.2 mg/mL in CH2Cl2
  • Chrysene @100 μg/mL in MeOH
  • ChryseneSolution,2000mg/L,1ml
  • ChryseneSolution,100mg/L,2x5ml
  • Chrysene 200 μg/mL In Toluene
  • ChryseneSolution,50mg/L,1mL
  • CHRYSENE FOR SYNTHESIS 1 G
  • 218-01-9
  • 218019
  • Organic Building Blocks
  • Alphabetic
  • Analytical Chromatography Product Catalog
  • Analytical Standards