ChemicalBook > CAS DataBase List > CHLORDANE

CHLORDANE

Product Name
CHLORDANE
CAS No.
57-74-9
Chemical Name
CHLORDANE
Synonyms
Compound K;1068;Belt;m140;Chlordan;chlordane , pur;Octachloro-4,7-methanotetrahydroindane;m410;GP110;M—410
CBNumber
CB1451919
Molecular Formula
C10H6Cl8
Formula Weight
409.78
MOL File
57-74-9.mol
More
Less

CHLORDANE Property

Melting point:
106-108℃
Boiling point:
492.46°C (rough estimate)
Density 
1.80
vapor pressure 
10 at 25 °C (Sunshine, 1969)(x 10-6 mmHg)
refractive index 
nD25 1.56-1.57
Flash point:
11 °C
storage temp. 
0-6°C
solubility 
Miscible with acetone, cyclohexanone, deodorized kerosene, ethanol, 2-propanol, trichloroethylene (Worthing and Hance, 1991)
Water Solubility 
0.1 mg l-1(25 °C)
form 
Viscous amber liquid
Henry's Law Constant
4.8 at 25 °C (gas stripping-GC, Warner et al., 1987)(x 10-5 atm?m3/mol)
Exposure limits
NIOSH REL: IDLH 0.5 mg/m3, IDLH 100 mg/m3; OSHA PEL: TWA 0.5 mg/m3; ACGIH TLV: TWA 0.5 mg/m3, STEL 2 mg/m3.
Stability:
Stable, but readily decomposed by moderately strong alkaline solutions. Corrodes iron and zinc and attacks some types of polymer. Incompatible with strong oxidizing agents.
CAS DataBase Reference
57-74-9
IARC
2B (Vol. Sup 7, 53, 79) 2001
EPA Substance Registry System
Chlordane (57-74-9)
More
Less

Safety

Hazard Codes 
Xn,N,Xi,F,T
Risk Statements 
21/22-40-50/53-36/37/38-11-39/23/24/25-23/24/25-67-65-38
Safety Statements 
36/37-60-61-36-33-26-16-45-7-62-29-9
RIDADR 
2995
OEB
C
OEL
TWA: 0.5 mg/m3 [skin]
WGK Germany 
2
RTECS 
PB9800000
HazardClass 
6.1(b)
PackingGroup 
II
HS Code 
29038200
Hazardous Substances Data
57-74-9(Hazardous Substances Data)
Toxicity
LD50 i.p. in male rats: 343 mg/kg (Harbison)
IDLA
100 mg/m3
More
Less

Hazard and Precautionary Statements (GHS)

Symbol(GHS)
Signal word
Danger
Hazard statements

H351Suspected of causing cancer

H410Very toxic to aquatic life with long lasting effects

Precautionary statements

P201Obtain special instructions before use.

P202Do not handle until all safety precautions have been read and understood.

P273Avoid release to the environment.

P280Wear protective gloves/protective clothing/eye protection/face protection.

P301+P310IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.

More
Less

N-Bromosuccinimide Price

Sigma-Aldrich
Product number
40089
Product name
Chlordane (mixture of isomers)
Purity
certified reference material, 5000?μg/mL in methanol
Packaging
1ML
Price
$42.6
Updated
2024/03/01
Sigma-Aldrich
Product number
48065-U
Product name
Chlordane (mixture of isomers)
Purity
certified reference material, 1000?μg/mL in isooctane
Packaging
1mL
Price
$32.2
Updated
2022/05/15
Usbiological
Product number
C2423-05
Product name
CD68
Packaging
1ml
Price
$928
Updated
2021/12/16
Usbiological
Product number
382282
Product name
CD68
Packaging
96Tests
Price
$729
Updated
2021/12/16
Apolloscientific
Product number
BITP1506
Product name
Recombinant Human CD68
Packaging
10μg
Price
$769
Updated
2021/12/16
More
Less

CHLORDANE Chemical Properties,Usage,Production

Description

Chlordane is a viscous, amber-coloured liquid. Technical-grade chlordane is a mixture of many structurally related compounds including trans-chlordane, cis-chlordane, chlordene, heptachlor, and trans-nonachlor. Chlordane was used as a broad-spectrum pesticide in the United States from 1948 to 1988. The uses included termite control in homes and pest control on agricultural crops such as maize and citrus, on home lawns, gardens, turf, and ornamental plants. Chlordane is a persistent organochlorine insecticide. It kills insects when ingested and on contact. Formulations include dusts, emulsifiable concentrates, granules, oil solutions, and wettable powder.

Chemical Properties

Chlordane is a viscous, amber-colored liquid. Technical grade chlordane is a mixture of many structurally related compounds including trans-chlordane, cis-chlordane, -chlordene, heptachlor, and trans-nonachlor. 14,15 Chlordane was used as a broad-spectrum pesticide in the United States from 1948 to 1988. Its uses included termite control in homes; pest control on agricultural crops such as maize and citrus, on home lawns, gardens, turf, and ornamental plants. Chlordane is a persistent organochlorine insecticide. It kills insects when ingested and on contact. Formulations include dusts, emulsifi able concentrates, granules, oil solutions, and wettable powder.

Chemical Properties

off-white powder

Chemical Properties

Chlordane is a colorless, or light-yellow or amber, thick liquid. Pungent, chlorine-like odor. It may occur as a crystalline solid.

Physical properties

Colorless to amber to yellowish-brown, viscous liquid. Technical formulations impart an aromatic, slight pungent odor similar to chlorine

Uses

Chlordane is a persistent non-systemic contact and ingested insecticide with some fumigant action. It is used as a wood preservative, protective treatment for underground cables, and to reduce earthworm populations in lawns. It is used against Formicidae, Coleoptera, Noctuidae larva, Saltatoria, subterranean termites, and many other insect pests. It controls household insects, pests of man and domestic animals.

Uses

Insecticide and fumigant.

Uses

Insecticide, fumigant.

Definition

ChEBI: Chlordane is a cyclodiene organochlorine insecticide. It has a role as a GABA-gated chloride channel antagonist and a persistent organic pollutant. It derives from a hydride of an indene.

Hazard

A possible carcinogen. Toxic by ingestion, inhalation, and skin absorption. Liver damage.

Health Hazard

Highly toxic to humans by ingestion; moderately toxic in test animals; skin absorption or inhalation of its vapors can producepoisoning effects; exhibits acute, delayed,and chronic effects; symptoms include nausea, vomiting, abdominal pain, irritation,confusion ataxia, tremor, and convulsions;delayed development of liver disease andblood disorder also reported (U.S. EPA1988); human death may result from ingestion of 10–20 g of pure compound or topical skin application of 50 g in 30 minutes;moderately irritating to skin; oral LD50value in rats ~300 mg/kg; exposure limit0.5 mg/kg: exposure limit 0.5 mg/m3 (skin);RCRA Waste Number U036; US EPA listedextremely hazardous substance; LD50 data inliterature inconsistent:
LD50 oral (rat): 200–600 mg/kg
LD50 oral (rabbit): 100 mg/kg
LD50 skin (rat): 690 mg/kg.

Health Hazard

Exposures to chlordane cause adverse health effects and poisoning to animals and humans. The acute oral LD50 values of technical grade chlordane for the rat range from 137 to 590 mg/kg and acute dermal LD50 for the rabbit is 1720 mg/kg. Signs of acute chlordane intoxication include ataxia, convulsions, and cyanosis followed by death due to respiratory failure. Rats treated by gavage with 100 mg/kg once a day for 4 days had increased absolute liver weights; fatty infi ltration of the liver; and increased serum triglycerides, creatine phosphokinase, and lactic acid dehydrogenase. Sheep treated by stomach tube with 500 mg/kg showed signs of intoxication, but recovered fully within 5–6 days; a dose of 1000 mg/kg resulted in death after 48 h. Ingestion of chlordane induces vomiting, dry cough, agitation and restlessness, hemorrhagic gastritis, bronchopneumonia, muscle twitching, convulsions, and death among humans. Non-lethal, but accidental poisoning of children has resulted in convulsions, excitability, loss of coordination, dyspnea, and tachycardia. Recovery, however, was complete. Ingestion of chlordane contaminated water (1.2 g/L) caused symptoms of gastrointestinal and neurological disorders. Chronic inhalation of chlordane produced symptoms of poisoning that included, but were not limited to, sinusitis, bronchitis, dermatitis, neuritis, migraine, gastrointestinal distress, fatigue, memory defi cits, personality changes, Exposures to chlordane cause adverse health effects and poisoning to animals and humans. The acute oral LD50 values of technical grade chlordane for the rat range from 137 to 590 mg/kg and acute dermal LD50 for the rabbit is 1720 mg/kg. Signs of acute chlordane intoxication include ataxia, convulsions, and cyanosis followed by death due to respiratory failure. Rats treated by gavage with 100 mg/kg once a day for 4 days had increased absolute liver weights; fatty infi ltration of the liver; and increased serum triglycerides, creatine phosphokinase, and lactic acid dehydrogenase. Sheep treated by stomach tube with 500 mg/kg showed signs of intoxication, but recovered fully within 5–6 days; a dose of 1000 mg/kg resulted in death after 48 h. Ingestion of chlordane induces vomiting, dry cough, agitation and restlessness, hemorrhagic gastritis, bronchopneumonia, muscle twitching, convulsions, and death among humans. Non-lethal, but accidental poisoning of children has resulted in convulsions, excitability, loss of coordination, dyspnea, and tachycardia. Recovery, however, was complete. Ingestion of chlordane contaminated water (1.2 g/L) caused symptoms of gastrointestinal and neurological disorders. Chronic inhalation of chlordane produced symptoms of poisoning that included, but were not limited to, sinusitis, bronchitis, dermatitis, neuritis, migraine, gastrointestinal distress, fatigue, memory defi cits, personality changes, decreased attention span, numbness or paresthesias, blood dyscrasias, disorientation, loss of coordination, dry eyes, and seizures. Chlordane-treated laboratory rats showed blood diseases, including aplastic anemia and acute leukemia

Agricultural Uses

Insecticide: Not approved for use in EU countries. Since 1988, the use and commercial production of chlordane (except for export) has been prohibited in the United States and other countries. The only commercial use still permitted is for fire ant control in power transformers. Chlordane is a broad-spectrum insecticide of the group of polycyclic chlorinated hydrocarbons called cyclodiene insecticides. Chlordane has been used extensively since the 1950s for termite control, as an insecticide for homes and gardens, and as a control for soil insects during the production of crops such as corn. Both the uses and the production volume of chlordane have decreased extensively since the issuance of a registration suspension notice for all food crops and home and garden uses of chlordane by the U.S. Environmental Protection Agency. However, significant commercial use of chlordane for termite control continues. Special groups at risk include children as a result of milk consumed; fishermen and their families because of the high consumption of fish and shellfish, especially freshwater fish; persons living downwind from treated fields; and persons living in houses treated with chlordane pesticide control agents.

Trade name

A SPON-CHLORDANE®; BELT®; CD 68®; CHLORINDAN®; CHLOR KIL®; CHLORODANE®; CORODANE®; CHLORTOX®; DOWCHLOR®[C]; DOW-KLOR®[C]; GOLD CREST®[C]; KILEX LINDANE®; HCS 3260®; KYPCHLOR®; M 140®; M 410®; NIRAN®; OCTACHLOR®; OKTATERR®; OMS 1437®; ORTHO-KLOR®[C]; SD 5532®; SHELL SD-5532®[C]; SYNKLOR®; TAT®; TAT CHLOR® 4; TERMEX®; TOPICHLOR® 20; TOPICLOR®; TOXICHLOR®; VELSICOL® 1068[C]

Safety Profile

Confirmed carcinogen with experimental carcinogenic data. Poison to humans by ingestion and possibly other routes. An experimental poison by ingestion, inhalation, intravenous, and intraperitoneal routes. Moderately toxic by skin contact. Human systemic effects by ingestion or skin contact: tremors, convulsions, excitement, ataxia (loss of muscle coordination), and gastritis. Experimental teratogenic and reproductive effects. Human mutation data reported. Combustible liquid. It is no longer permitted for use as a termiticide in homes. A central nervous system stimulant whose exact mode of action is unknown, but it may involve microsomal enzyme stimulation. Animals poisoned by this and related compounds show an extremely marked loss of appetite and neurological symptoms. The fatal dose to humans is unknown. It has , been estimated to be between 6 and 60 g (0.2 and 2 ounces). One person receiving ~~Oan accidental slan application of 25% solution (amounting to somethmg over 30 g of technical chlordane) developed symptoms withm about 40 minutes and ded, apparently of respiratory failure, before medical attention was obtained. In two patients, death followed exposure to low ingestion doses of chlordane (2-4 g). On microscopic examination, both patients showed severe chronic fatty degeneration of the liver, characteristic of chronic alcoholism. Although these two fatalities cannot be attributed exclusively to chlordane, they are entirely consistent with previous observations that the toxicity of other chlorinated hydrocarbons is much enhanced in the presence of chronic liver damage. The dangerous chronic dose in humans is unknown. small doses exhibit hyperexcitabiltty, tremors, and convulsions, and those that survive long enough show marked anorexia and loss of weight. Symptoms in animals frequently occur withm an hour of the administration of a large dose, but death often is delayed for several days depending on the dosage and route of administration. In any event, symptoms are of longer duration with chlordane than with DDT under similar condtions. are essentially normal, except that the insecticide is found in tissues by means of bioassay. A method for specific, quantitative chemical analysis for chlordane is now available using small amounts of subcutaneous fat. Chronically poisoned animals show degenerative changes in the liver and kidney tubules. emits toxic fumes of Cl-. Experimental animals exposed to repeated Laboratory analyses on poisoned animals When heated to decomposition chlordan

Potential Exposure

Chlordane is a broad spectrum insecticide of the group of polycyclic chlorinated hydrocarbons called cyclodiene insecticides. Chlordane has been used extensively since the 1950s for termite control; as an insecticide for homes and gardens; and as a control for soil insects during the production of crops, such as corn. Both the uses and the production volume of chlordane have decreased extensively since the issuance of a registration suspension notice for all food crops and home and garden uses of chlordane by the United States Environmental Protection Agency. However, significant commercial use of chlordane for termite control continues. Special groups at risk include children as a result of milk consumed; fishermen and their families because of the high consumption of fish and shellfish, especially freshwater fish; persons living downwind from treated fields; and persons living in houses treated with chlordane pesticide control agents.

First aid

If this chemical gets into the eyes, remove anycontact lenses at once and irrigate immediately for at least15 min, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts theskin, remove contaminated clothing and wash immediatelywith soap and water. Speed in removing material from skinis of extreme importance. Shampoo hair promptly if contaminated. Seek medical attention immediately. If thischemical has been inhaled, remove from exposure, beginrescue breathing (using universal precautions, includingresuscitation mask) if breathing has stopped and CPR ifheart action has stopped. Transfer promptly to a medicalfacility. When this chemical has been swallowed, get medical attention. Give large quantities of water and inducevomiting. Do not make an unconscious person vomit.

Carcinogenicity

IARC has concluded that there is inadequate evidence for carcinogenicity of chlordane to humans and sufficient evidence for its carcinogenicity to animals.
Chlordane was not mutagenic to bacteria.

Environmental Fate

Biological. In four successive 7-day incubation periods, chlordane (5 and 10 mg/L) was recalcitrant to degradation in a settled domestic wastewater inoculum (Tabak et al., 1981).
Soil. The actinomycete, Nocardiopsis sp., isolated from soil extensively degraded pure cis- and trans-chlordane to dichlorochlordene, oxy-chlordane, heptachlor, heptachlor endoepoxide, chlordene chlorohydrin and 3-hydroxy-trans-chlordane. Oxychlordane is slowly degraded to 1-hydroxy-2-chlorochlordene (Beeman and Matsumura, 1981). The reported half-life in soil is approximately one year (Hartley and Kidd, 1987). The percentage of chlordane remaining in a Congaree sandy loam soil after 14 years was 40% (Nash and Woolson, 1967).
Chlordane did not degrade in settled domestic wastewater after 28 days (Tabak et al., 1981).
Plant. Alfalfa plants were sprayed with chlordane at a rate of 1 lb/acre. After 21 days, 95% of the residues had volatilized (Dorough et al., 1972).
Photolytic. Chlordane should not undergo direct photolysis since it does not absorb UV light at wavelengths greater than 280 nm (Gore et al., 1971).
Chemical/Physical. In an alkaline medium or solvent, carrier, diluent or emulsifier having an alkaline reaction, chlorine will be released (Windholz et al., 1983). Technical grade chlordane passed over a 5% platinum catalyst at 200°C resulted in the formation of tetrahydrodicyclopentadiene (Musoke et al., 1982).
Chlordane (1 mM) in methyl alcohol (30 mL) underwent dechlorination in the presence of nickel boride (generated by the reaction of nickel chloride and sodium borohydride).
The catalytic dechlorination of chlordane by this method yielded a pentachloro derivative as the major product having the empirical formula C10H9Cl5 (Dennis and Cooper, 1976).
Chlordane is subject to hydrolysis via the nucleophilic substitution of chlorine by hydroxyl ions to yield 2,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro-4,7-methano-1Hindene which is resistant to further hydrolysis (Kollig, 1993). The hydrolysis half-life at pH 7 and 25°C was estimated to be >197,000 years (Ellington et al., 1988).
Emits very toxic fumes of chlorides when heated to decomposition (Lewis, 1990)

Metabolic pathway

Chlordane undergoes a variety of metabolic processes including oxidation, reductive dechlorination, hydrolysis and epoxidation. These reactions afford products involving alteration of the cyclopentane ring; the norbornyl moiety generally remains unaffected except in photochemical reactions when bridged compounds may be formed or dechlorination may occur. Hydroxylation at position 3 is effected by microsomal mixed function oxidases to form 3-hydroxychlordane (12). Dehydration of this compound gives 1,2-dichlorochlordene (13), a key metabolic intermediate in the formation of oxychlordane and other metabolites. A second metabolic pathway involves dehydrochlorination to form heptachlor (2). Dechlorination affords 1-chlorodihydrochlordene (7). Hydrolysis gives 1-chloro-2-hydroxychlordene chlorohydrin (6) which may be metabolised to monochlorodihydroxy and trihydroxy derivatives of dihydrochlordene (Nomeir and Hajjar, 1987).

storage

Color Code—Blue: Health Hazard/Poison: Storein a secure poison location. Prior to working withChlordane you should be trained on its proper handling andstorage. Chlordane must be stored to avoid contact withstrong oxidizers (such as perchlorates, peroxides, permanganates, chlorates, and nitrates), since violent reactions occur.Store in tightly closed containers in a cool, well-ventilatedarea away from heat. A regulated, marked area should beestablished where this chemical is handled, used, or storedin compliance with OSHA Standard 1910.1045.

Shipping

UN2996 Organochlorine pesticides, liquid, toxic, Hazard Class: 6.1; Labels: 6.1-Poisonous materials.

Degradation

Acetone-sensitised photolysis of cis-chlordane (1) gave bridged derivatives to which cage-like structures (19a or 19b) have been assigned. The isomeric trans-chlordane (1) failed to yield bridged products because the double bond in these compounds interacts with the endo-chlorine atom (Fischler and Korte, 1969). However, it was later reported that with transchlordane (l),bridging did occur forming 20 involving carbon-1 which has a non-interfering exo-chlorine atom.
Unsensitised photolysis of trans-chlordane (1) in aqueous organic solvents at wavelengths less than 300 nm gave two isomeric monodechlorinated products (21a and 2) and ultimately the bis-dechlorination product (Vollner et al. 1969; Ivie et al. 1972). When cis-chlordane (1) was irradiated as a solid film, up to 70% was converted after 16-20 hours irradiation into a mixture of products, more than half of which were bridged isomers (depending on conditions, the dechlorinated compounds may also form bridged compounds). These transformations are shown in Scheme 1.
Chlordane is decomposed by alkalis with the loss of chlorine.

Toxicity evaluation

Technical chlordane is a viscous, amber liquid (bp 175 ?C/267 Pa, vp 1.3 mPa at 25 ?C) soluble in water to about 9 μg/L. It has rat LD50s of 335, 430 (oral), and 840, 690 (dermal) mg/kg. Technical chlordane contains about 60% of the isomers and 10–20% of heptachlor.

Incompatibilities

Contact with strong oxidizers may cause fire and explosions. High heat and contact with alkaline solutions cause decomposition with the production of toxic fumes including chlorine, phosgene, hydrogen chloride. Attacks iron, zinc, plastics, rubber, and coatings.

Waste Disposal

Chlordane is dehydrochlorinated in alkali to form “nontoxic” products, a reaction catalyzed by traces of iron, but the reaction is slow. The environmental hazards of the products are uncertain. Chlordane is completely dechlorinated by sodium in isopropyl alcohol. The UN Recommends incineration methods for disposal of chlordane. In accordance with 40CFR165, follow recommendations for the disposal of pesticides and pesticide containers. Must be disposed properly by following package label directions or by contacting your local or federal environmental control agency, or by contacting your regional EPA office.

CHLORDANE Preparation Products And Raw materials

Raw materials

Preparation Products

More
Less

CHLORDANE Suppliers

Sichuan Kulinan Technology Co., Ltd
Tel
400-1166-196 18981987031
Fax
028-84555506 800101999
Email
cdhxsj@163.com
Country
China
ProdList
11707
Advantage
57
Spectrum Chemical Manufacturing Corp.
Tel
021-021-021-67601398-809-809-809 15221380277
Fax
021-57711696
Email
marketing_china@spectrumchemical.com
Country
China
ProdList
9658
Advantage
60
Shanghai Aladdin Bio-Chem Technology Co.,LTD
Tel
400-400-6206333 18521732826
Fax
021-50323701
Email
market@aladdin-e.com
Country
China
ProdList
25003
Advantage
65
TianJin Alta Scientific Co., Ltd.
Tel
022-65378550-8551
Fax
+86-022-2532-9655
Email
contact@altascientific.com
Country
China
ProdList
2773
Advantage
58
Chizhou Kailong Import and Export Trade Co., Ltd.
Tel
Fax
-
Email
xg01_gj@163.com
Country
China
ProdList
9484
Advantage
50
Codow Chemical Co.,Ltd.
Tel
18620099427 18620099427
Fax
+86-20-62619665
Email
amy@howeipharm.com
Country
China
ProdList
1751
Advantage
55
Beijing Solarbio Science & Tecnology Co., Ltd.
Tel
010-50973186 4009686088
Email
3193328036@qq.com
Country
China
ProdList
18338
Advantage
68
Shenzhen Polymeri Biochemical Technology Co., Ltd.
Tel
+86-400-002-6226 +86-13028896684;
Email
sales@rrkchem.com
Country
China
ProdList
57412
Advantage
58
AFINE CHEMICALS LIMITED
Tel
+86-0571-85134551
Fax
008657185134895
Email
sales@afinechem.com
Country
China
ProdList
15354
Advantage
58
Hubei Jusheng Technology Co.,Ltd.
Tel
18871490254
Fax
027-59599243
Email
linda@hubeijusheng.com
Country
CHINA
ProdList
28172
Advantage
58

57-74-9, CHLORDANERelated Search:


  • NSC 8931
  • Chlordance
  • DKFZp686M18236
  • GP110
  • SCARD1
  • OCTA-KLOR(R)
  • Octachlor
  • OCTACHLOR(R)
  • TERMSEAL
  • TERMISEAL
  • TERMEX
  • TERMIDAN
  • TOXICHLOR(R)
  • VELSICOL 1068(R)
  • 4,7-Methano-1H-indene,1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-
  • chlordane (bsi,iso,esa,esa,jmaf)
  • chlordane (mixture of isomers)
  • Chlordane, alpha & gamma isomers
  • 1,2,4,5,6,7,8,8-octahydro-2,3,3a,4,7,7a-hexahydro-4,7-methanoindan
  • 1,2,4,5,6,7,8,8-ottochloro-3a,4,7,7a-tetrahydro-4,7-endo-methano--indaan(dutch
  • 1,2,4,5,6,7,8,8-Ottochloro-3a,4,7,7a-tetraidro-4,7-endo-metano-indano
  • 1068
  • 1068 Steral
  • 4,7-Methanoindan, 1,2,4,5,6,7,8,8-octachloro-3a,4,7,7a-tetrahydro-
  • 4,7-methanoindan,1,2,4,5,6,7,8,8,-octachloro-2,3,3a,4,7,7a-hexahydro
  • Aspon-chlordane
  • Belt
  • chloordaan
  • Chlor Kil
  • Chlor kill
  • Chlordan
  • 1,2,4,5,6,7,8,8-OCTACHLORO-4,7-METHANO-3ALPHA,4,7,7ALPHA-TETRAHYDROINDANE TECH
  • Recombinant Human CD68
  • Chlordane 1g [57-74-9]
  • 3a,4,7,7a-Tetrahydro-1,2,4,5,6,7,8,8-chloro-4,7-methanoindane
  • chlordane (ISO) 1,2,4,5,6,7,8,8-octachloro-3a,4,7,7a-tetrahydro-4,7-methanoindan
  • M—410
  • MAHATZ
  • CHLORDANE
  • CHLORDITE
  • CHLORDRITE
  • CD-68(R)
  • 'LGC' (1108)
  • CHLORDANE REFERENCE STANDARD FOR EPA METHODS 508, 608, 625, 8270
  • CHLORDANE, 1GM, NEAT
  • CHLORDANE, 1X1ML, MEOH, 20UG/ML
  • CHLORDANE, 1X10ML, ISO, 200UG/ML
  • CHLORDANE, 1X1ML, MEOH, 500UG/ML
  • 1,2,4,5,6,7,8,8-OCTACHLORO-2,3,3A,4,7,7A-HEXAHYDRO-4,7-METHANOINDANE
  • 1,2,4,5,6,7,8,8-OCTACHLORO-3A,4,7,7A-TETRAHYDRO-4,7-METHANOINDENE
  • 1,2,4,5,6,7,8,8-OCTACHLORO-4,7-METHANE-3A,4,7,7A-TETRAHYDROINDANE
  • 1,2,4,5,6,7,8,8-OCTACHLORO-4,7-METHANO-3 A,4,7,7A-TETRAHYDROINDANE
  • 1,2,4,5,6,7,8,8-octa-8,8-octachloro-3a,4,7,7a-tetrahydro-4,7-methanoindan
  • 1,2,4,5,6,7,8,8-octachloro-3a,4,7,7a-tetra-hydro-4,7-methan-
  • 1-Exo,2-endo,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methanoindene
  • alpha-, gamma-Chlordane
  • Chlordane (alpha and gamma isomers)
  • Chlordane (avg cis-,trans-)