AIDS treatment
ChemicalBook > CAS DataBase List > Darunavir

Darunavir

AIDS treatment
Product Name
Darunavir
CAS No.
206361-99-1
Chemical Name
Darunavir
Synonyms
D03656;TMC-114;DARUVIR;arunavir;Darunavir;UIC-94017;Derunavir;Dilinavir;Dirinavir;Darunavir base
CBNumber
CB51176244
Molecular Formula
C27H37N3O7S
Formula Weight
547.66
MOL File
206361-99-1.mol
More
Less

Darunavir Property

Melting point:
74-760C
Density 
1.34±0.1 g/cm3(Predicted)
storage temp. 
-20°C
solubility 
Soluble in DMSO (>25 mg/ml)
pka
11.43±0.46(Predicted)
form 
powder
color 
white to beige
Stability:
Stable for 1 year from date of purchase as supplied. Solutions in DMSO may be stored at -20°C for up to 3 months.
More
Less

Safety

WGK Germany 
3
Hazardous Substances Data
206361-99-1(Hazardous Substances Data)
More
Less

Hazard and Precautionary Statements (GHS)

Symbol(GHS)
Signal word
Warning
Hazard statements

H302Harmful if swallowed

H315Causes skin irritation

H319Causes serious eye irritation

H335May cause respiratory irritation

Precautionary statements

P261Avoid breathing dust/fume/gas/mist/vapours/spray.

P305+P351+P338IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.

More
Less

N-Bromosuccinimide Price

Sigma-Aldrich
Product number
SML0937
Product name
Darunavir
Purity
≥98% (HPLC)
Packaging
10MG
Price
$115
Updated
2023/06/20
Sigma-Aldrich
Product number
SML0937
Product name
Darunavir
Purity
≥98% (HPLC)
Packaging
50MG
Price
$486
Updated
2023/06/20
Cayman Chemical
Product number
15866
Product name
Darunavir
Purity
≥98%
Packaging
1mg
Price
$28
Updated
2024/03/01
Cayman Chemical
Product number
15866
Product name
Darunavir
Purity
≥98%
Packaging
5mg
Price
$54
Updated
2024/03/01
Cayman Chemical
Product number
15866
Product name
Darunavir
Purity
≥98%
Packaging
10mg
Price
$92
Updated
2024/03/01
More
Less

Darunavir Chemical Properties,Usage,Production

AIDS treatment

Darunavir is a new kind of non peptide anti retroviral protease inhibitors in AIDS therapy. It is first developed by the Johnson pharmaceutical Iceland branch, Tibotec. It is of the highest bioavailability in the 6 protease inhibitors (saquinavir, ritonavirvir, indinavir, naphthalene nelfinavir, amprenavir and ABT378/r). It acts by blocking the formation of new and mature virus particles from the surface of the infected host cells and inhibiting the virus's protease. When the product is used for a long time, it usually can reduce the HIV virus vector in blood, increase the count of CD4 cells, reduce the chance of HIV infection, improve the quality of life and prolong life. It is suitable for adults who are infected with the HIV virus but have no effect on the use of existing antiretroviral drugs. The drug must be combined with the use of low doses of ritonavir or other antiretroviral agents, in order to improve the efficacy. The antiviral activity in vitro can be evaluated by being against acute and chronic infected lymphocytes and lymphocytes in peripheral blood. The IC50 is 0.012 to 0.08 mmol/ L for acute infected cells and 0.41 mmol/L for chronic infected cells. For oral administration, recommended dose is 1,200mg once and twice per day. The doseshould be reduced for patients with mild to moderate liver dysfunction and those with renal dysfunction. The adverse reaction of darunavir is mainly gastrointestinal reaction, flushing, itching and perioral numbness, depression, mood disorders, taste disorder etc. This product is not recommended for patients with moderate to severe liver dysfunction. Because of the sulfonamides in this component, it is prohibited for those who are allergic to sulfanilamide and any component in the prescription of this product.

Description

Darunavir is the latest weapon in the arsenal of agents to combat human immunodeficiency virus type 1(HIV-1). As an HIV-1 protease inhibitor, its mechanism of action involves blocking the cleavage of the gag and gag–pol polyproteins into functional proteins essential for the production of infectious progeny virus; the result is the production of immature, noninfectious viral particles. Compared to predecessor HIV protease inhibitors, darunavir retains activity against resistant stains, a critical factor with the continual emergence of multidrug- resistant (MDR) mutants. Despite experiencing a 13-fold reduction in binding to MDR HIV-1 protease, this binding is 1.5 orders of magnitude tighter than the first-generation protease inhibitors. Furthermore, darunavir exhibits less than a 10-fold decrease in susceptibility in cell culture against 90% of 3309 clinical isolates resistant to amprenavir, atazanavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir. In contrast, darunavir-resistant viruses display limited susceptibility to only tipranavir, suggesting limited cross-resistance between these two protease inhibitors. To avoid the issues of the peptide-based protease inhibitors, darunavir has evolved from a structure-based design effort to minimize peptidic features and reduce molecular weight and complexity.

Chemical Properties

White Amorphous Solid

Originator

Tibotec/J&J (US)

Uses

Second generation HIV-1-protease inhibitor; structurally similar to amprenavir. Antiviral. It is a COVID19-related research product.

Definition

ChEBI: An N,N-disubstituted benzenesulfonamide bearing an unsubstituted amino group at the 4-position, used for the treatment of HIV infection. A second-generation HIV protease inhibitor, darunavir was designed to form robust interactions with the protease enzyme from many strains of HIV, including those from treatment-experienced patients with multiple resistance mutations to other protease inhibitors.

brand name

Prezista

Acquired resistance

Darunavir is less affected than other protease inhibitors by mutations to resistance, but subgroups with more than 10 cumulative mutations show a >10-fold (median value) decrease in susceptibility. The major resistance mutations occur at positions 50 (150V), 54 (I50M/L), 76 (L76V) and 84 (I84V) of the protease gene.

Pharmaceutical Applications

A synthetic compound formulated as the ethanolate for oral use in combination with ritonavir.

Biochem/physiol Actions

Darunavir has been sanctioned by the food and drug administration (FDA) as the first treatment of drug-resistant human immunodeficiency virus (HIV).

Pharmacokinetics

Oral absorption: c. 82%
Cmax 600 mg once daily + ritonavir 100 mg twice daily: c. 6500 μg/L
Cmin 600 mg oral + ritonavir 100 mg twice daily: c. 3578 μg/L
Plasma half-life: c. 15 h
Volume of distribution: c. 131 L
Plasma protein binding: c. 95%
A single 600 mg dose given orally in combination with ritonavir 100 mg every 12 h increased the systemic exposure of darunavir approximately 14-fold. The relative bioavailability is 30% lower when administered with food in the presence of low-dose ritonavir. Distribution into human CSF, semen or breast milk has not yet been determined.
At least three oxidative metabolites, mediated predominantly through CYP3A4, have been identified in humans; all are at least 10-fold less active than the parent compound against HIV. Around 80% and 14% of the dose is found in the feces and urine, respectively. It should be used with caution in mild–moderate hepatic impairment and avoided in patients with more severe impairment.

Clinical Use

Treatment of HIV infection (in combination with other antiretroviral drugs)

Side effects

In phase III studies the most common adverse events were diarrhea, nausea, headache and nasopharyngitis. Patients coinfected with hepatitis B or C did not have a higher incidence of adverse events.

Synthesis

Several routes to the synthesis of darunavir have been reported utilizing the chiral hexahydro-furo[2,3-b]furan-3-ol carbonate 12 and several chiral syntheses of bisfuranol 12 have been disclosed as well. One route that has been performed on kilogram scale is highlighted in the scheme. Thus 2,3-Oisopropylidene- glyceraldehyde 5 was stirred with dimethyl malonate at RT for 3 h in tetrahydrofuran followed by addition of pyridine and heating to 45oC. Then acetic anhydride was added at 45oC over 4h and stirred at that temperature for 12 h. Concentration of the reaction followed by basic workup and extraction with toluene and solvent swap to methanol gave the products as a 23.6% solution in methanol. Nitromethane was added to this methanol solution followed by the addition of DBU over 30 min keeping the reaction temperature below 25oC. Stirring the reaction for an additional 3 h afforded intermediate 7. The reaction was cooled to 0oC and sodium methoxide was added dropwise over 30 min After stirring the reaction for 30 min, the reaction was added slowly over 1h to conc. H2SO4 in methanol at 0oC while ensuring the temperature did not exceed 10oC. This cooled reaction mixture (0oC) was then added to a vigorously stirred mixture of ethyl acetate and 1N sodium hydrogen carbonate at 0oC. The organic layer was separated, washed with brine and concentrated to give the residue containing a mixture of 8 and 9. This mixture was dissolved in methanol then water and potassium hydroxide were added and the resulting mixture was heated at reflux for 2 h. The reaction was cooled to 35oC and acetic acid was added and the resulting mixture concentrated. Additional acetic acid was added and stirred at room temperature for 2 h. The mixture was concentrated, diluted with water and extracted with ethylacetate. The ethylacetate layer was washed with 1N sodium bicarbonate three times and the organic layer was concentrated and diluted with isopropanol. The isopropanol mixture was then heated to 60-70oC and further evaporation of isopropanol under reduced pressure to a concentrated volume with cooling to 0oC over 4-5 h, allowed for the crystallization of product 10. After filtration and drying, the intermediate lactone 10 was dissolved in THF and treated over 30 min with a solution of lithium borohydride in THF. The reaction was warmed to 50oC over 1 h and stirred at that temperature for 2h. The resulting suspension was cooled to -10oC and conc. HCl was added slowly over 4h, while maintaining the temperature below 0oC. Solvent swap was done by concentrating to a small volume and addition of ethyl acetate and further concentration of the solvent with continuous addition of ethylacetate. Following this procedure, when the final ratio of THF:ethylacetate reached 4:1 ratio, the mixture was cooled to 0oC and filtered off while washing the filter cake with more ethylacetate. Concentration of the filtrate to dryness gave the hexahydro-furo [2,3-b]furan-3-ol 11 which was confirmed by NMR and chiral gas chromatography. Carbonate intermediate 12 was prepared in 66% yield by treating 11 with disuccinimidyl carbonate at RT for 3h in the presence of triethylamine. Since the process scale synthesis of darunavir has not been disclosed, the latest reported synthesis is highlighted. The commercially available epoxide 13 was mixed with isobutyl amine in isopropanol at RT and refluxed for 6h. The reaction was concentrated and purified by chromatography to provide amine 15 (99%). p-Nitrophenyl sulfonyl chloride was added to a mixture of the amine 15 in dichloromethane and saturated aqueous bicarbonate at RT and stirred for 12 h to give sulfonamide 16 in 96% yield after purification. Hydrogenation of 16 with 10% Pd/C under 1 atm hydrogen for 11h at room temperature gave aniline 17 in 95% yield. The BOC group was removed by treating 17 with TFA in dichloromethane and the resulting amine was reacted with carbonate 12 in the presence of triethylamine for 3h to provide the desired darunavir (II) in 89% yield.

target

HIV Protease

Drug interactions

Potentially hazardous interactions with other drugs
Antibacterials: rifabutin concentration increased - reduce dose of rifabutin; darunavir concentration reduced by rifampicin - avoid.
Anticoagulants: avoid with apixaban and rivaroxaban
Antidepressants: possibly reduced concentration of paroxetine and sertraline; darunavir concentration reduced by St John’s wort - avoid.
Antimalarials: concentration of lumefantrine increased; possibly increases concentration of quinine
Antipsychotics: possibly increases concentration of aripiprazole (reduce dose of aripiprazole); possibly increases quetiapine concentration - avoid.
Antivirals: avoid with boceprevir or telaprevir; take didanosine 1 hour before or 2 hours after darunavir administration; concentration reduced by efavirenz - adjust dose; concentration of both drugs increased with indinavir and simeprevir - avoid with simeprevir; concentration reduced by lopinavir, also concentration of lopinavir increased - avoid; concentration of maraviroc increased, consider reducing dose of maraviroc; concentration of paritaprevir increased and paritaprevir reduces darunavir concentration; concentration reduced by saquinavir; increased risk of rash with raltegravir; avoid with telaprevir.
Cytotoxics: possibly increases bosutinib concentration, avoid or reduce dose of bosutinib; possibly increases everolimus concentration - avoid; possibly increases ibrutinib concentration - reduce ibrutinib dose.
Ergot alkaloids: increased risk of ergotism - avoid.
Lipid-lowering drugs: possibly increased risk of myopathy with atorvastatin and rosuvastatin, reduce dose of rosuvastatin; possibly increases pravastatin concentration; avoid with lomitapide; avoid with simvastatin.1
Orlistat: absorption of darunavir possibly reduced.
Ranolazine: possibly increases ranolazine concentration - avoid.

Metabolism

Darunavir is metabolised by oxidation by the cytochrome P450 system (mainly the isoenzyme CYP3A4), with at least 3 metabolites showing some antiretroviral activity. About 80% of a dose is excreted in the faeces, with 41.2% of this as unchanged drug; 14% is excreted in the urine

storage

Store at -20°C

References

Koh et al. (2003), Novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI UIC-94017 (YMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro; Antimicrob. Agents Chemother., 47 2123 Surleraux et al. (2005), Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor; J. Med. Chem., 48 1813 Beck et al. (2020), Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model; Comput. Struct. Biotechnol. J, 18 784 Khan et al. (2020), Identification of chymotrypsin-like protease inhibitors of SARS-VCoV-2 via integrated computational approach; J. Biomol.Struct. Dyn., 39 2607 De Meyers et al. (2020), Lack of antiviral activity of darunavir against SARS-CoV-2; J. Infect. Dis, 97 7 Kim et al. (2020), Use of Darunavir-Cobicistat as a Treatment Option for Critically Ill Patients with SARS-CoV-2 Infection; Yonsei Med. J., 61 826

Darunavir Preparation Products And Raw materials

Raw materials

Preparation Products

More
Less

Darunavir Suppliers

Chembest Research Laboratories Limited
Tel
021-20908456
Fax
021-58180499
Email
sales@BioChemBest.com
Country
China
ProdList
6011
Advantage
61
Hubei Nordina Biotechnology Co., Ltd.
Tel
18171027221; 18171027221
Fax
18162687220
Email
nuodinashengwu@163.com
Country
China
ProdList
2589
Advantage
58
Jiangxi ravel Biotechnology Co.,Ltd
Tel
18502762009
Email
721846333@qq.com
Country
China
ProdList
2446
Advantage
58
Shanghai Boyle Chemical Co., Ltd.
Tel
Fax
86-21-57758967
Email
sales@boylechem.com
Country
China
ProdList
2923
Advantage
55
J & K SCIENTIFIC LTD.
Tel
010-82848833 400-666-7788
Fax
86-10-82849933
Email
jkinfo@jkchemical.com
Country
China
ProdList
94838
Advantage
76
ZHIWE CHEMTECH CO LTD
Tel
021-20221225 13917446399
Fax
QQ:115820162
Email
sales@zhiwe.net
Country
China
ProdList
587
Advantage
61
Adamas Reagent, Ltd.
Tel
400-6009262 16621234537
Fax
021-64823266
Email
zhangsn@titansci.com
Country
China
ProdList
14113
Advantage
59
LGM Pharma
Tel
1-(800)-881-8210
Fax
615-250-9817
Email
inquiries@lgmpharma.com
Country
United States
ProdList
2127
Advantage
70
Chemsky(shanghai)International Co.,Ltd.
Tel
021-50135380
Email
shchemsky@sina.com
Country
China
ProdList
32344
Advantage
50
China DongFan Chemical Co.,LTD
Tel
86-0571-85151182
Fax
86-0571-85151182
Country
China
ProdList
5700
Advantage
66
More
Less

View Lastest Price from Darunavir manufacturers

Henan Fengda Chemical Co., Ltd
Product
Darunavir 206361-99-1
Price
US $30.00-0.80/kg
Min. Order
1kg
Purity
99%
Supply Ability
g-kg-tons, free sample is available
Release date
2024-03-26
Guangzhou Biocar Biotechnology Co.,Ltd.
Product
Darunavir 206361-99-1
Price
US $1.00/g
Min. Order
10g
Purity
99.5%
Supply Ability
1000kg
Release date
2022-01-10
Hong Kong Tiansheng New Material Trading Co., Ltd
Product
Darunavir 206361-99-1
Price
US $115.00/Kg/Bag
Min. Order
1Kg/Bag
Purity
99%
Supply Ability
100kg
Release date
2021-11-25

206361-99-1, DarunavirRelated Search:


  • [(1S,2R)-3-[[(4-Aminophenyl)sulfonyl](2-methylpropyl)amino]-2-hydroxy-1-(phenyl-methyl)propyl]carabamic Acid (3R,3aS,6aR)-Hexahydrofuro[2,3-b]-furan-3-yl Ester
  • Darunavir
  • TMC-114
  • UIC-94017
  • [(1S,2R)-3-[[(4-Aminophenyl)sulfonyl](2-methylpropyl)amino]-2-hydroxy-1-(phenyl-methyl)propyl]carabamic Acid (3R,3aS,6aR)-Hexahydrofuro[2,3-β]-furan-3-yl Ester
  • D03656
  • Darunavir (usan/inn)
  • (3R,3aS,6aR)-hexahydrofuro[2,3-b]furan-3-yl [(2S,3R)-4-{[(4-aminophenyl)sulfonyl](2-methylpropyl)amino}-3-hydroxy-1-phenylbutan-2-yl]carbamate
  • [(3R,3aS,6aR)-2,3,3a,4,5,6a-Hexahydrofuro[5,4-b]furan-3-yl] N-[(2S,3R)-4-[(4-aminophenyl)sulfonyl-(2-methylpropyl)amino]-3-hydroxy-1-phenylbutan-2-yl]carbamate
  • Darunavir( UIC-94017,TMC-114)
  • (3R,3AS,6aR)-hexahydrofuro[2,3-b]furan-3-yl ((2S,3R)-4-(4-amino-N-isobutylphenylsulfonamido)-3-hydroxy-1-phenylbutan-2-yl)carbamate
  • (3R,3AS,6aR)-hexahydrofuro[2,3-b]furan-3-yl ((2S,3R)-4-(4-amino-N-isobutylphenylsulfonamido)-3
  • Darunaviroxy-1-phenylbutan-2-yl]carbamate
  • DARUNAVIR(TMC114)
  • Darunavir base
  • Darunavir(UIC-94017)
  • (3R,3aS,6aR)-Hexahydrofuro[2,3-b]furan-3-yl N-[(1S,2R)-3-[[(4-aminophenyl)sulfonyl](2-methylpropyl)amino]-2-hydroxy-1-(phenylmethyl)propyl]carbamate
  • Carbamic acid, N-[(1S,2R)-3-[[(4-aminophenyl)sulfonyl](2-methylpropyl)amino]-2-hydroxy-1-(phenylmethyl)propyl]-, (3R,3aS,6aR)-hexahydrofuro[2,3-b]furan-3-yl ester
  • arunavir
  • Darunavir USP/EP/BP
  • Derunavir
  • Darunavir (10mM in DMSO)
  • DarunavirQ: What is Darunavir Q: What is the CAS Number of Darunavir Q: What is the storage condition of Darunavir Q: What are the applications of Darunavir
  • DARUVIR
  • [(3aS,4R,6aR)-2,3,3a,4,5,6a-hexahydrofuro[2,3-b]furan-4-yl] N-[(2S,3R)-4-[(4-aminophenyl)sulfonyl-(2-methylpropyl)amino]-3-hydroxy-1-phenylbutan-2-yl]carbamate
  • Dilinavir
  • Dirinavir
  • DaruvirImpurity
  • 206361-99-1
  • 6357828-49-3
  • 06361-99-1
  • Intermediates & Fine Chemicals
  • Pharmaceuticals
  • Antiviral Agents
  • peptides
  • Aromatics
  • Heterocycles
  • Inhibitors