Description Chemical and Physical Properties Preparation Hazard Statements
ChemicalBook > CAS DataBase List > Decahydronaphthalene

Decahydronaphthalene

Description Chemical and Physical Properties Preparation Hazard Statements
Product Name
Decahydronaphthalene
CAS No.
91-17-8
Chemical Name
Decahydronaphthalene
Synonyms
DECALIN;DECALINE;NAPHTHANE;NAPHTHALANE;Decahydronaphthalin;Bicyclo[4.4.0]decane;DEKALIN;decalene;Dekalina;Naphthan
CBNumber
CB6333241
Molecular Formula
C10H18
Formula Weight
138.25
MOL File
91-17-8.mol
More
Less

Decahydronaphthalene Property

Melting point:
−125 °C(lit.)
Boiling point:
189-191 °C(lit.)
Density 
0.896 g/mL at 25 °C(lit.)
vapor density 
4.76 (vs air)
vapor pressure 
42 mm Hg ( 92 °C)
refractive index 
n20/D 1.474(lit.)
Flash point:
57 °C
storage temp. 
Store below +30°C.
solubility 
0.006g/l (experimental)
form 
Liquid
color 
Clear
Odor
Aromatic, like turpentine; mild, characteristic.
explosive limit
0.7-4.9%, 100°F
Water Solubility 
6 mg/L at 20 ºC
Sensitive 
Hygroscopic
Merck 
14,2846
BRN 
878165
Henry's Law Constant
7.00, 8.37, 10.6, 11.7, and 19.9 (x 10-2 atm?m3/mol) at 10, 15, 20, 25, and 30 °C, respectively (EPICS, Ashworth et al., 1988)
Dielectric constant
2.2(20℃)
Stability:
Stable. Incompatible with oxidizing agents. Combustible. May form explosive peroxides. Heat and light accelerate peroxide formation.
InChIKey
NNBZCPXTIHJBJL-UHFFFAOYSA-N
LogP
4.2
CAS DataBase Reference
91-17-8(CAS DataBase Reference)
NIST Chemistry Reference
Naphthalene, decahydro-(91-17-8)
EPA Substance Registry System
Decahydronaphthalene (91-17-8)
More
Less

Safety

Hazard Codes 
C,N,Xi
Risk Statements 
20-34-51/53-36/37/38-65
Safety Statements 
26-36/37/39-45-60-24/25-23-62-61
RIDADR 
UN 1147 3/PG 3
WGK Germany 
1
RTECS 
QJ3150000
Autoignition Temperature
482 °F
TSCA 
Yes
HazardClass 
3
PackingGroup 
III
HS Code 
29021990
Hazardous Substances Data
91-17-8(Hazardous Substances Data)
Toxicity
LD50 orally in rats: 4.2 g/kg; LC (in air) in rats: 500 ppm (Smyth)
More
Less

Hazard and Precautionary Statements (GHS)

Symbol(GHS)
Signal word
Danger
Hazard statements

H226Flammable liquid and vapour

H304May be fatal if swallowed and enters airways

H314Causes severe skin burns and eye damage

H331Toxic if inhaled

H410Very toxic to aquatic life with long lasting effects

Precautionary statements

P210Keep away from heat/sparks/open flames/hot surfaces. — No smoking.

P280Wear protective gloves/protective clothing/eye protection/face protection.

P301+P330+P331IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.

P303+P361+P353IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower.

P305+P351+P338IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.

More
Less

N-Bromosuccinimide Price

Sigma-Aldrich
Product number
D251
Product name
Decahydronaphthalene, mixture of cis + trans
Purity
reagent grade, 98%
Packaging
18L
Price
$1240
Updated
2024/03/01
Sigma-Aldrich
Product number
8.03101
Product name
Decahydronaphthalene
Purity
(mixture of cis-and trans isomers) for synthesis
Packaging
100mL
Price
$36
Updated
2024/03/01
Sigma-Aldrich
Product number
8.03101
Product name
Decahydronaphthalene
Purity
(mixture of cis-and trans isomers) for synthesis
Packaging
1L
Price
$79.9
Updated
2024/03/01
Sigma-Aldrich
Product number
8.03101
Product name
Decahydronaphthalene
Purity
(mixture of cis-and trans isomers) for synthesis
Packaging
25kg
Price
$905
Updated
2024/03/01
Sigma-Aldrich
Product number
294772
Product name
Decahydronaphthalene, mixture of cis + trans
Purity
anhydrous, ≥99%
Packaging
1l
Price
$251
Updated
2024/03/01
More
Less

Decahydronaphthalene Chemical Properties,Usage,Production

Description

Decahydronaphthalene also referred to as Decalin is an organic compound that dissolves rubber, resins, waxes, fats, and oils. It is a colorless, aromatic hydrocarbon which is used as an alternative to turpentine, as a cleaning fluid and as a stain remover. Decahydronaphthalene was also used as a varnish remover for oil-based paintings in the past.

Chemical and Physical Properties

Decahydronaphthalene has a molecular weight of 138.254 g/mol, a monoisotopic mass of 138.141 g/mol and an exact mass of 138.141 g/mol. It has a heavy atom count of 10 and a complexity of 80.6. It is a clear, colorless liquid with a characteristic odor that resembles that of methanol.
Decahydronaphthalene has a flash point of 134°F and it is less dense than water. It indicates poor solubility in water at 250℃ and its vapours are denser than air. It has a density of 0.89 at 68°F220℃.
Decalin is very soluble in chloroform, ether, methanol and alcohol, and it is miscible with isopropyl alcohol, propyl, esters and a majority of the ketones. Decalin has a boiling point of 383/ 155.50℃ at 760 mm Hg and a melting point of -44°F -40°C.
After long periods of exposure, Decalin forms toxic concentrations of peroxides. When Decalin is heated to decomposition, it released acrid fumes and smoke.

Preparation

Decahydronaphthalene is prepared by the hydrogenation of tetralin at low pressure with rhodium as the catalyst. Decalin can be oxidized to yield a significant amount of the hydroperoxide derivative. The cis isomer of Decahydronaphthalene can be oxidized at a higher rate than the combination of the trans and cis isomers, or the trans isomer solely. Therefore, when Decahydronaphthalene is synthesized through the hydrogenation of an unsaturated homolog such as 1,2,3,4-tetrahydronaphthalene for application in the synthesis of hydroperoxide, the resulting product is made of the cis isomer primarily. This method results in Decahydronaphthalene that is saturated with the cis isomer. Such high-pressure processes are technical to execute, and they are relatively expensive. A low-pressure preparation process that entails the hydrogenation of tetralin to obtain cis Decahydronaphthalene is yet to be developed.
The rhodium catalyst is maintained on an inert support such as carbon or alumina, and the reaction is best conducted in the presence of a solvent, which may include a lower saturated carboxylic acid such as acetic acid. Other solvents such as propionic acid, mineral acids and non-acid solvents which may consist of water, hydrocarbons, ethers, esters, amines, amides and alcohol can also be used. The portion of the solvent should be one in which the reaction apparatus can withstand, while in some instances it may be best to omit the solvent. Acetic acid yields a higher rate of the cis isomer when it is applied as the solvent as opposed to the application of alumina as the support substance for the catalyst. The rhodium catalyst is applied as the hydrogenation catalyst, and it is best prepared through reduction of rhodium salts, which may include oxide or chloride. The progress of the hydrogenation reaction may depend on the quantity of the rhodium catalyst applied to the reaction. The tetralin to rhodium ratio is also dependent on the positioning of rhodium with an inert support, the configuration of the support and the apparatus used during the hydrogenation process. For instance, if the rhodium catalyst on an inert support such as carbon or alumina is about 5%, the reaction will yield satisfactory results. Furthermore, approximately 12-25g of the catalyst per mole of the Tetralin may result in satisfactory results. The optimum temperatures for this reaction are 50 C but the rate of the reaction may increase if the temperature is increased gradually from approximately 200 C250 C. The main advantage of this method is the fact that it can be conducted under low pressures of hydrogen, which may be as low as 0.5 atmospheres. Based on the above catalyst concentrations and reaction conditions, the total conversion of tetralin to Decahydronaphthalene may be obtained in about 1-2 hours. This reaction also yields the cis isomer which could be more than 90% of the product, which is relative to the total hydrogenation process which may be ascertained by the absorption of the theoretical amount of hydrogen by tetralin. To attain the desired cis Decahydronaphthalene, the reaction contents should be passed through a conventional fractional distillation to remove any trans isomers. It is fundamental to exercise care while conducting the distillation process using a basic packed column to yield a chromatographically pure cis Decahydronaphthalene.

Hazard Statements

Decalin is a flammable liquid, and it may also cause acute toxicity upon inhalation. It may cause skin irritation/corrosion upon contact as well as severe eye irritation/damage.

Chemical Properties

colourless liquid

Physical properties

Clear, colorless, flammable liquid with a mild methanol or hydrocarbon-like odor

Uses

Solvent for naphthalene, waxes, fats, oils, resins, rubbers; motor fuel and lubricants; cleaning machinery; substitute for turpentine; shoe-creams; stain remover.

Uses

Solvent for naphthalene, fats, resins, oils; alternate for turpentine in lacquers, shoe polishes, and waxes; component in motor fuels and lubricants

Uses

Decahydronaphthalene is widely used as an industrial solvent for resins and fuel additives. It is a substitute for turpentine in lacquers, shoe polishes and waxes.

Production Methods

Decalin occurs naturally in crude oil and is produced commercially by the catalytic hydrogenation of naphthalene. It is also a product of combustion and is released from natural fires.

Definition

ChEBI: An ortho-fused bicyclic hydrocarbon that is the decahydro- derivative of naphthalene.

General Description

A clear colorless liquid with an aromatic odor. Flash point 134°F. Less dense than water and insoluble in water. Vapors heavier than air.

Air & Water Reactions

Flammable. Insoluble in water.

Reactivity Profile

Saturated aliphatic hydrocarbons, such as Decahydronaphthalene, may be incompatible with strong oxidizing agents like nitric acid. Charring of the hydrocarbon may occur followed by ignition of unreacted hydrocarbon and other nearby combustibles. In other settings, aliphatic saturated hydrocarbons are mostly unreactive. They are not affected by aqueous solutions of acids, alkalis, most oxidizing agents, and most reducing agents. Oxidizes readily in air to form unstable peroxides that may explode spontaneously [Bretherick, 1979 p.151-154].

Health Hazard

Inhalation or ingestion irritates nose and throat, causes numbness, headache, vomiting; urine may become blue. Irritates eyes. Liquid de-fats skin and causes cracking and secondary infection; eczema may develop.

Fire Hazard

HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks). Vapor explosion hazard indoors, outdoors or in sewers. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated. Many liquids are lighter than water.

Chemical Reactivity

Reactivity with Water No reaction; Reactivity with Common Materials: No reaction; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Not pertinent; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.

Safety Profile

Moderately toxic by inhalation and ingestion. Questionable carcinogen with experimental carcinogenic and neoplastigenic data. Mildly toxic by skin contact. Human systemic effects by inhalation: conjunctiva irritation, unspecified olfactory and pulmonary system changes. Can cause kidney damage. Mutation data reported. A skin and eye irritant. Flammable liquid when exposed to heat or flame, can react with oxidzing materials. To fight fire, use foam, CO2, dry chemical. When heated to decomposition it emits acrid smoke and fumes.

Environmental Fate

Photolytic. The following rate constants were reported for the reaction of decahydronaphthalene and OH radicals in the atmosphere: 1.96 x 10-11 and 2.02 x 10-11 cm3/molecule?sec at 299 K for cis and trans isomers, respectively (Atkinson, 1985). A photooxidation reaction rate constant of 2.00 x 10-11 was reported for the reaction of decahydronaphthalene (mixed isomers) and OH radicals in the atmosphere at 298 K (Atkinson, 1990).
Chemical/Physical. Decahydronaphthalene will not hydrolyze because it has no hydrolyzable functional group.

Purification Methods

Then the organic phase is separated, washed with water, saturated aqueous Na2CO3, again with water, dried with CaSO4 or CaH2 (and perhaps dried further with Na), filtered and distilled under reduced pressure (b 63-70o/10mm). It has also been purified by repeated passage through long columns of silica gel previously activated at 200-250o, followed by distillation from LiAlH4 and storage under N2. Type 4A molecular sieves can be used as a drying agent. Storage over silica gel removes water and other polar substances. [For the separation of cis and trans isomers see Seyer & Walker J Am Chem Soc 60 2125 1938, and Baker & Schuetz J Am Chem Soc 69 1250 1949.]

Decahydronaphthalene Preparation Products And Raw materials

Raw materials

Preparation Products

More
Less

Decahydronaphthalene Suppliers

A&K Petrochem Industries Ltd
Tel
--
Fax
--
Country
Canada
ProdList
53
Advantage
58
Toronto Research Chemicals Inc.
Tel
--
Fax
--
Email
info@trc-canada.com
Country
Canada
ProdList
6668
Advantage
58
Caledon Laboratories Ltd.
Tel
--
Fax
--
Email
tech@caledonlabs.com
Country
Canada
ProdList
1149
Advantage
68
More
Less

View Lastest Price from Decahydronaphthalene manufacturers

Hong Kong Excellence Biotechnology Co., Ltd.
Product
Decahydronaphthalene 91-17-8
Price
US $100.00/kg
Min. Order
1kg
Purity
>99%
Supply Ability
50 TONS
Release date
2023-10-08
Career Henan Chemical Co
Product
Decahydronaphthalene 91-17-8
Price
US $1.00/ASSAYS
Min. Order
1ASSAYS
Purity
98%
Supply Ability
1kg,2kg,100kg
Release date
2019-07-09

91-17-8, DecahydronaphthaleneRelated Search:


  • DEKALIN
  • DECALIN
  • DECALINE
  • DECALIN(R)
  • DECAHYDRONAPHTHALENE
  • naphth(la)ne
  • DECAHYDRONAPHTHALENE MIXTURE OF CIS AN&
  • DECALIN SOLVENT, 97%
  • Decalin (DuPont)
  • Decahydronaphthalene, 99%, SuperDry, mixture of cis and trans, water≤20 ppm, J&KSeal
  • DecahydronaphthaL
  • bicyclo(4.4.o)decane
  • Bicyclo[4.4.0]decane
  • Bicyclo[4.4.0]decane(mixtureofcis/transisomers)
  • DECALIN SOLVENT 97%
  • DECAHYDRONAPHTHALENE (CIS+TRANS)
  • DECAHYDRONAPHTHALENE ANHYDROUS 99+% &
  • DECAHYDRONAPHTHALENE MIXTURE OF CIS AND&
  • DECAHYDRONAPHTHALENE, ANHYDROUS, 99+%, M IXTURE OF CIS AND TRANS
  • DECAHYDRONAPHTHALENE, 98%, MIXTURE OF CI
  • DECAHYDRONAPHTHALENE MIXTURE OF <I>CIS</
  • DecalinForSynthesis
  • decahydronaphthalene, mixture of cis + trans
  • decahydronaphthalene,mixture of cis +trans
  • decalene
  • Decahydronaphthalene,cis+trans,97%
  • Decahydronaphthalene,98%
  • Decahydronaphthalin
  • Decahydronaphthalene (cis- and trans- mixture)
  • 1,2,3,4,4a,5,6,7,8,8a-Decahydronaphthalene
  • Decahydronaphthalene, 98%, mixture of cis and trans
  • Decahydronaphthalene (cis- and trans- mixture) [Testing Methods for Sulfur in Crude Oil and Petroleum Products]
  • Decahydronaphthalene, spectro grade,98%
  • Decaline (cis+trans)
  • Decahydronaphthalene [Testing Methods for Sulfur in Crude Oil and Petroleum Products]
  • Ten hydrogen naphthalene
  • Decahydronapht
  • Decahydronaphthalene, 99%, Mixture of cis and trans, anhydrous, AcroSeal
  • Decahydronaphthalene, SuperDry, J&KSeal
  • Decahydronaphthalene (Mix)
  • Bicyclo(4,4,0)decane
  • bicyclo(4.4.0)decane
  • Decahydronaphthalene, mixture of isomers, synthesis grade
  • Decahydronaphthalene, mixture of cis and trans, anhydrous, AcroSeal, 99%
  • Decahydronaphthalene ,97.5% [mixture of cis and trans]
  • Decalin, Bicyclo[4.4.0]decane
  • Decahydronaphthalene, Mixture of cis and trans, 98% 1LT
  • Decahydronaphthalene, Mixture of cis and trans, 98% 2.5LT
  • Decahydronaphthalene, Mixture of cis and trans, 98% 500ML
  • Decahydronaphthalene, Mixture of cis and trans, 98% 5ML
  • decahydro-naphthalen
  • Decahydronaphthalene,c&t
  • decahydronaphthalene,mixtureofcisandtrans
  • Decalin,c&t
  • Decanhydronaphthalene
  • Dekalina
  • dekalina(polish)
  • Naphthalene,decahydro-