Basic information Safety Supplier Related
ChemicalBook >  Product Catalog >  API >  Vitamins and Minerals medicines >  Vitamin B drugs >  Coenzyme B12

Coenzyme B12

Basic information Safety Supplier Related

Coenzyme B12 Basic information

Product Name:
Coenzyme B12
Synonyms:
  • DIMETHYLBENZIMIDAZOLYLCOBAMIDE COENZYME, 5,6-
  • DMBC COENZYME
  • COENZYME B12
  • COBAMAMIDE
  • COBAMAMIDE/DIBENCOZIDE
  • COBAMIDE
  • 5'-deoxyadenosylcobalamin
  • 5'-DEOXYADENOSYLCOBALAMINE
CAS:
13870-90-1
MF:
C72H99CoN18O17P
MW:
1578.6
EINECS:
237-627-6
Product Categories:
  • Aromatic Carboxylic Acids, Amides, Anilides, Anhydrides & Salts
  • PHARMACEUTICALS
Mol File:
13870-90-1.mol
More
Less

Coenzyme B12 Chemical Properties

storage temp. 
-20°C
solubility 
DMSO (Slightly), Methanol (Slightly), Water (Slightly, Sonicated)
pka
3.5(at 25℃)
form 
Solid
color 
Red to Very Dark Red
Water Solubility 
26g/L(24 ºC)
Merck 
13,2476
BRN 
4122932
Stability:
Hygroscopic
InChIKey
WAJLPPDUWGAMTH-NGQUPMDYNA-L
More
Less

Safety Information

Hazard Codes 
Xi
Risk Statements 
36/37/38
Safety Statements 
22-24/25-36-26
WGK Germany 
3
RTECS 
GG3800000
8
HS Code 
2936260000
Toxicity
LD50 oral in guinea pig: 5gm/kg

MSDS

More
Less

Coenzyme B12 Usage And Synthesis

Description

Coenzyme B12 (adenosylcobalamin; AdoCbl; 5'-Deoxyadenosylcobalamin) is a form of vitamin B12. It belongs to the corrinoid group of compounds containing a corrin macrocycle and are produced only by certain bacteria and archaea. It is a cofactor for various enzymes, including mutases, eliminases, aminomutases, and reductases. These enzymes catalyze reactions that generate free radicals through the release of the adenosyl group, allowing usually unreactive molecules to become reactive. Genetic mutations in enzymes synthesizing Coenzyme B12 lead to Coenzyme B12 deficiency and methylmalonic aciduria.

Originator

Actimide,Tobishi

Uses

emulsifying agent

Uses

Coenzyme B12 has been used as a supplement for culturing plasmid variants in in vivo assay of yvrC-lacZ fusions.

Definition

ChEBI: A member of the class of cobalamins that is vitamin B12 in which the cyano group is replaced by a 5'-deoxyadenos-5'-yl moiety. It is one of the two metabolically active form of vitamin B12.

Definition

Coenzyme B12 (5'-Deoxy-5'-adenosylcobalamin or Ado-Cbl) is the largest molecule among the B type vitamins. It is an essential cofactor in many biological rearrangement reactions. Coenzyme B12 activates enzymes such as methionine synthase (MetH), methyl-malonyl-CoA mutase (MutAB), and glycerol dehydratase (DhaB). Biologically, coenzyme B12 is one of the two main types of vitamin B12, adenosyl-cobalamin and methyl-cobalamin, and the former is highly preferred for many enzymes, including glycerol and diol dehydratases[1].

Manufacturing Process

Isopropylidine adenosine was converted to the p-toluene sulphonyl (tosyl) ester by reaction with tosyl chlorine solution, following the method of Clark et al. (1951) [J. Chem. Soc. 2952]. Because of its tendency to cyclization, the reagent was used directly it was ready. A reaction flask with separating funnels was set up in such a way that the whole system could be evacuated and filled with pure nitrogen two or three times, to eliminate all oxygen, and reagents could then be added when desired, in the closed system.
The flask contained 700.0 mg hydroxocobalamin in 20 ml of water, one funnel 200.0 mg sodium borohydride in 10 ml of water, and another the crude isopropylidine adenosine tosyl ester made from 500 mg isopropylidine adenosine dissolved in 10 ml of 50% aqueous methanol. On adding the borohydride to the vitamin, the color changed instantly from red to brown, then slowly to a greenish black. After 15 min the isopropylidine adenosine tosyl ester was added, and the colour slowly changed to a red-brown. After 45 min at room temperature air was admitted and the mixture was shaken to reoxidise any remaining reduced vitamin B12. The alkaline solution was neutralized with dilute hydrochloric acid and extracted with phenol carbon tetrachloride 3:1 in small portions till the aqueous layer was nearly colorless. The combined extracts were washed with water, mixed with about ten parts of carbon tetrachloride-acetone 10:1 and shaken with small portions of water till all red color was removed.
The product was purified by chromatography on columns of DEAE (diethyl aminoethyl) cellulose (3 x 1) followed by CM (carboxymethyl) cellulose (6 x 1), developed with water. Nearly all the color washed quickly through DEAE cellulose. The effluent and washes were applied to the CM cellulose column, which was further developed with water. Elution was continued as long as this fraction continued to emerge, in a total of 850 ml. One half of this fraction (425 ml) was concentrated to a few ml under reduced pressure; it crystallized slowly after adding acetone to slight turbidity. So cobamamide was obtained.

Therapeutic Function

Anabolic, Analgesic

Biotechnological Production

There exist two distinctive routes for the biosynthesis of coenzyme B12, namely oxygen-dependent (encoded by cob operons) and oxygen-independent (by CBI operons) pathways. Their requirement of molecular oxygen during synthesis and the point at which cobalt is inserted into the corrin ring. De novo coenzyme B12 biosynthesis is limited to some bacteria and archaea. The aerobic pathway is present in Pseudomonas denitrificans, Sinorhizobium meliloti, Rhodobacter sphaeroides and Pseudomonas aeruginosa. At the same time, the anaerobic one is present in Salmonella typhimurium, Klebsiella pneumoniae, Citrobacter amalonaticus, Bacillus megaterium, Propionibacterium shermanii and Lactobacillus reuteri.

General Description

Vitamin B12 cobalamin refers to a group of chemically-related cobalt containing molecules. The physiologically active forms of vitamin B12 include methylcobalamin and adenosylcobalamin, whereas hydroxocobalamin (vitamin B12a, OHCbl) and cyanocobalamin (CNCbl) are storage and delivery forms.

Agricultural Uses

Cobamide enzyme is the cobalt complex formed between the cobalt-porphyrin ring structure and the nucleotide in vitamin B12 co-enzyme.

Biochem/physiol Actions

Vitamin B12 cobalamin is involved in DNA synthesis and fatty acid synthesis. It also plays a vital role as a coenzyme in the conversion of mitochondrial methylmalonyl co-enzyme A to succinyl co-enzyme A.

References

[1] Thuan Phu Nguyen-Vo. “Analysis and characterization of coenzyme B12 biosynthetic gene clusters and improvement of B12 biosynthesis in Pseudomonas denitrificans ATCC 13867.” Fems Microbiology Letters 365 21 (2018).
[2] I. I. Merkelbach, Hm Henk Buck. “Mechanism of action of coenzyme B12. Quantum-chemical considerations.” Recueil des Travaux Chimiques des Pays-Bas 28 1 (2010): 166–169.
[3] Prof. Dr. Karl Gruber, Prof. Dr. Bernhard Krutler. “Coenzyme B12 Repurposed for Photoregulation of Gene Expression.” Angewandte Chemie International Edition 55 19 (2016): 5638–5640.

Coenzyme B12 Preparation Products And Raw materials

Raw materials

Coenzyme B12Supplier

J & K SCIENTIFIC LTD.
Tel
010-82848833 400-666-7788
Email
jkinfo@jkchemical.com
Beijing HwrkChemical Technology Co., Ltd
Tel
010-89508211 18501085097
Email
sales.bj@hwrkchemical.com
Adamas Reagent, Ltd.
Tel
400-6009262 16621234537
Email
chenyj@titansci.com
Hunan Hui Bai Shi Biotechnology Co., Ltd.
Tel
0731-85526065 13308475853
Email
ivy@hnhbsj.com
Spectrum Chemical Manufacturing Corp.
Tel
021-021-021-67601398-809-809-809 15221380277
Email
marketing_china@spectrumchemical.com