Description History Properties Safety and Health Effects
ChemicalBook > CAS DataBase List > Saccharin

Saccharin

Description History Properties Safety and Health Effects
Product Name
Saccharin
CAS No.
81-07-2
Chemical Name
Saccharin
Synonyms
SACCHARINE;Benzo[d]isothiazol-3(2H)-one 1,1-dioxide;O-SULFOBENZIMIDE;INSOLUBLE SACCHARIN;GLUCID;GLUSIDE;Sacharin;GARANTOSE;SYNCAL (R) SDI;Benzosulfimide
CBNumber
CB1743735
Molecular Formula
C7H5NO3S
Formula Weight
183.18
MOL File
81-07-2.mol
More
Less

Saccharin Property

Melting point:
226-229 °C (lit.)
Boiling point:
subl
Density 
0.828
vapor pressure 
0Pa at 25℃
refractive index 
1.5500 (estimate)
storage temp. 
Store below +30°C.
solubility 
acetone: soluble1g in 12mL(lit.)
form 
Crystals or Crystalline Powder
pka
11.68(at 18℃)
color 
White
Odor
odorless
Water Solubility 
3.3 g/L (20 ºC)
Merck 
14,8311
BRN 
6888
Stability:
Stable. Incompatible with strong oxidizing agents.
InChIKey
CVHZOJJKTDOEJC-UHFFFAOYSA-N
LogP
-0.024 at 25℃
CAS DataBase Reference
81-07-2(CAS DataBase Reference)
NIST Chemistry Reference
Saccharin(81-07-2)
IARC
3 (Vol. Sup 7, 73) 1999
EPA Substance Registry System
Saccharin (81-07-2)
More
Less

Safety

Risk Statements 
40-62-63-68
Safety Statements 
24/25
RIDADR 
UN 3077 9/PG 3
WGK Germany 
2
RTECS 
DE4200000
TSCA 
Yes
HazardClass 
IRRITANT
HS Code 
29251100
Hazardous Substances Data
81-07-2(Hazardous Substances Data)
Toxicity
LD50 oral in mouse: 17gm/kg
More
Less

Hazard and Precautionary Statements (GHS)

Symbol(GHS)
Signal word
Warning
Hazard statements

H302Harmful if swallowed

H315Causes skin irritation

H319Causes serious eye irritation

H335May cause respiratory irritation

H351Suspected of causing cancer

H361Suspected of damaging fertility or the unborn child

Precautionary statements

P261Avoid breathing dust/fume/gas/mist/vapours/spray.

P305+P351+P338IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.

More
Less

N-Bromosuccinimide Price

Sigma-Aldrich
Product number
8.20128
Product name
Saccharin
Purity
for synthesis
Packaging
250g
Price
$72.4
Updated
2024/03/01
Sigma-Aldrich
Product number
8.20128
Product name
Saccharin
Purity
for synthesis
Packaging
1kg
Price
$242
Updated
2024/03/01
Sigma-Aldrich
Product number
8.20128
Product name
Saccharin
Purity
for synthesis
Packaging
5kg
Price
$884
Updated
2024/03/01
Sigma-Aldrich
Product number
109185
Product name
Saccharin
Purity
≥98%
Packaging
250g
Price
$100
Updated
2024/03/01
Sigma-Aldrich
Product number
109185
Product name
Saccharin
Purity
≥98%
Packaging
500g
Price
$200
Updated
2024/03/01
More
Less

Saccharin Chemical Properties,Usage,Production

Description

Saccharin is an organic compound that is normally used as a non-nutritive sweetening agent. Also known as ortho-sulfobenzoic acid imide, saccharin occurs in the form of various salts, mainly calcium and sodium.

History

Saccharin was discovered in 1879 by chemists Constantin Fahlberg and Ira Remsen as they were researching about the oxidation of o-toluenesulfonamide. While eating, Fahlberg noticed the presence of sweetness in his food due to his arms and hands that contained saccharin. As he checked his laboratory apparatus by taste tests, Fahlberg found out that the source of this sweetness was from saccharin. Saccharin is still made of toluenesulfonamide and from phthalic anhydride.

Properties

Saccharin is stable when heated and does not chemically react with other food ingredients, therefore, it stores well. When blended with other sweeteners, saccharin often compensates for each sweetener’s faults and weakness. Commonly, saccharin is used with aspartate in diet carbonated soft drinks.
Saccharin is insoluble in water in its acid form. Its majorly used form as an artificial sweetener is its sodium salt.

Safety and Health Effects

The utilization of saccharin in human food has raised numerous health and safety concerns. In the 1970s, saccharin was linked with the development of bladder in rodents in various laboratory studies on rats. Consequently, the United States Food and Drug Administration (FDA) pushed for its ban, sighting that it is carcinogenic to humans.
However, after strong objection from the public regarding the ban, American Congress intervened and allowed the compound to remain in the food supply as long as all the manufactures libel it with a warning when packaging.
Saccharin gas been classified to have no nutritional or food energy value, as such, it safe for patients with diabetes.

Chemical Properties

white crystalline solid

Chemical Properties

Saccharin is a crystalline solid with a sweet taste (500 times sweeter than sugar).

Chemical Properties

Saccharin occurs as odorless white crystals or a white crystalline powder. It has an intensely sweet taste, with a metallic or bitter aftertaste that at normal levels of use can be detected by approximately 25% of the population. The aftertaste can be masked by blending saccharin with other sweeteners.

History

Saccharin is the oldest and one of the best-known artificial sweeteners. It was accidentally discovered in 1878 by Ira Remsen (1846 1927) and his postdoctoral research fellow Constantin Fahlberg (1850 1910) at Johns Hopkins University when he was working on toluene derivatives from coal tar. He traced the taste back to the oxidized sulfonated chemicals he was working with and determined it was a sulfonated amide benzoic acid compound. Remsen and Fahlberg jointly published their findings on the compound in 1879 and 1880 in American and German journals. During the next several years, Remsen continued his academic work as one of the world's leading chemists, and Fahlberg perfected methods for commercialization of saccharin. Fours year after they published their work, Fahlberg and his uncle, Adolf List, applied for a United States patent for the compound, which was granted in 1885 (U.S. patent number 319082).
Saccharin was first introduced to the public in 1885. It was initially promoted as an antiseptic and food preservative. The use of saccharin as a sweetener started around 1900 when it was marketed for use by people with diabetes. Because saccharin was a cheap sugar substitute, it was viewed as a threat to the sugar industry. Sugar manufacturers in Europe, Canada, and the United States lobbied for laws restricting saccharin’s use. Calls to regulate saccharin in foods have been present throughout its history. Early in the 20th century, the political climate promoted legislation and government oversight to ensure that food was safe. In 1906, the passage of the Federal Food and Drug Act gave government regulatory authority concerning the safety of food. The Department of Agriculture’s Bureau of Chemistry, the predecessor of the Food and Drug Administration (FDA), performed research and made recommendations with respect to food additives. In 1907, a study by the newly created Board of Food and Drug Inspection made claims (latter refuted) that saccharin damaged the kidneys and other organs. The leader of the Bureau of Chemistry, Harvey W. Wiley (1844–1930), was a member of the Board and held the view that saccharin (and other chemicals such as benzoates) was dangerous.
Approximately 30,000 tons per year of saccharin and saccharin salts are used globally each year, with about 5,000 tons of this used in the United States. Questions on saccharin’s safety has followed its usage to the present day. Saccharin is banned in Canada (except in special cases), several European countries, and many other countries. Countries where it is legal place restrictions on its use. Saccharin has been regulated in the United States since the beginning of the century. A Canadian study in 1977 that reported saccharin Legislation, signed into law on December 21, 2000, repealed the warning label requirement for products containing saccharin. The National Cancer Institute’s position is that there is no clear evidence linking saccharin to cancer in humans.

Uses

Saccharin is a non-nutritive synthetic sweetener which is 300–400 times sweeter than sucrose. it is nonhygroscopic and has a bitter aftertaste and a stability problem in cooked, canned, or baked goods. it is slightly soluble in water with a solubility of 10 g in 100 g of water at 25°c, but the solubility improves in boiling water. as sodium saccharin, there are two forms: 1,2-benzisothiazolin-3-one- 1,1-dioxide, sodium salt dihydrate, with a solubility of 1 g in 1.2 ml of water; and 1,2-benzisothiazolin-3-one-1,1-dioxide, sodium salt. calcium saccharin (chemical name: 1,2-benzisothiazolin-3-one-1, 1-dioxide, calcium salt) is used where low sodium content and reduced after-taste are required. it is used in low-calorie foods such as jam, beverages, and desserts. it is also termed sodium benzosulfimide.

Uses

It is a non-nutritive sweetener; pharmaceutic aid (flavor). Saccharin was formerly listed as reasonably anticipated to be a human carcinogen; delisted because the cancer data are not sufficient to meet the current criteria for this listing.

Uses

Usually used in high performance liquid chromatographic method for the simultaneous separation and determination of acesulfame potassium, saccharine and aspartame;and also used in sweet preference test of rats.

Definition

ChEBI: A 1,2-benzisothiazole having a keto-group at the 3-position and two oxo substituents at the 1-position. It is used as an artificial sweetening agent.

Preparation

Saccharin is synthesized using two methods: the Remsen-Fahlberg process and the Maumee or Sherwin-Williams method. The Remsen-Fahlberg synthesis of saccharin starts by reacting toluene with chlorosulfonic acid to give ortho and para forms of toluene-sulfonic acid (Figure 78.1). The acid can be converted to sulfonyl chlorides by treating with phosphorus pentachloride. The ortho form, o-toluene-sulfonyl chloride, is treated with ammonia to give o-toluene-sulfonamide, which is then oxidized with potassium permanganate to produce o-sulfamido-benzoic acid. On heating, the latter yields saccharin. Another synthesis was developed at Maumee Chemical Company in Toledo, Ohio, and it came to be known as the Maumee process. This process starts with phthalic anhydride, which is converted into anthranilic acid. Anthranilic acid is then reacted with nitrous acid, sulfur dioxide, chlorine, and ammonia to give saccharin. The Maumee process was further refi ned by the Sherwin-Williams Company and is therefore now referred to as the Sherwin-Williams process.

Definition

A white crystalline organic compound used as an artificial sweetener; it is about 550 times as sweet as sugar (sucrose). It is nearly insoluble in water and so generally used in the form of its sodium salt. Possible links with cancer in animals has restricted its use in some countries.

Definition

saccharin: A white crystalline solid,C7H5NO3S, m.p. 224°C. It is madefrom a compound of toluene, derivedfrom petroleum or coal tar. It is awell-known artificial sweetener,being some 500 times as sweet assugar (sucrose), and is usually marketedas its sodium salt. Because ofan association with cancer in laboratoryanimals, its use is restricted insome countries.

Production Methods

Saccharin is prepared from toluene by a series of reactions known as the Remsen–Fahlberg method. Toluene is first reacted with chlorosulfonic acid to form o-toluenesulfonyl chloride, which is reacted with ammonia to form the sulfonamide. The methyl group is then oxidized with dichromate, yielding o-sulfamoylbenzoic acid, which forms the cyclic imide saccharin when heated.
An alternative method involves a refined version of the Maumee process. Methyl anthranilate is initially diazotized to form 2- carbomethoxybenzenediazonium chloride; sulfonation followed by oxidation then yields 2-carbomethoxybenzenesulfonyl chloride. Amidation of this material, followed by acidification, forms insoluble acid saccharin.

brand name

Sweeta (Bristol-Myers Squibb).

General Description

White crystals. Odorless or faintly aromatic odor. Sweet taste.

Air & Water Reactions

Slightly soluble in water.

Reactivity Profile

An amide. Acid to litmus. pH of 0.35% aqueous solution: 2.0. Organic amides/imides react with azo and diazo compounds to generate toxic gases. Flammable gases are formed by the reaction of organic amides/imides with strong reducing agents. Amides are very weak bases (weaker than water). Imides are less basic yet and in fact react with strong bases to form salts. That is, they can react as acids. Mixing amides with dehydrating agents such as P2O5 or SOCl2 generates the corresponding nitrile. The combustion of these compounds generates mixed oxides of nitrogen (NOx).

Hazard

A questionable carcinogen. Products con- taining it must have a warning label.

Fire Hazard

Flash point data for Saccharin are not available; however, Saccharin is probably combustible.

Flammability and Explosibility

Non flammable

Pharmaceutical Applications

Saccharin is an intense sweetening agent used in beverages, food products, table-top sweeteners, and oral hygiene products such as toothpastes and mouthwashes. In oral pharmaceutical formulations, it is used at a concentration of 0.02–0.5% w/w. It has been used in chewable tablet formulations as a sweetening agent.
Saccharin has been used to form various pharmaceutical cocrystals. Saccharin can be used to mask some unpleasant taste characteristics or to enhance flavor systems. Its sweetening power is approximately 300–600 times that of sucrose.

Biochem/physiol Actions

A sweet tastant for mammals. A glycerol taste receptor binding site specific for glucose has been proposed in drosophila.

Safety Profile

Confirmed carcinogen withexperimental neoplastigenic and tumorigenic data. Mildacute toxicity by ingestion. Experimental teratogenic andreproductive effects. Mutation data reported. Whenheated to decomposition it emits toxic NOx and SOx.

Safety

There has been considerable controversy concerning the safety of saccharin, which has led to extensive studies since the mid-1970s. Two-generation studies in rats exposed to diets containing 5.0–7.5% total saccharin (equivalent to 175 g daily in humans) suggested that the incidence of bladder tumors was significantly greater in saccharin-treated males of the second generation than in controls. Further experiments in rats suggested that a contaminant of commercial saccharin, o-toluene sulfonamide, might also account for carcinogenic effects. In view of these studies, a ban on the use of saccharin was proposed in several countries. However, in 1977 a ban by the FDA led to a Congressional moratorium that permitted the continued use of saccharin in the USA.
From the available data it now appears that the development of tumors is a sex-, species-, and organ-specific phenomenon, and extensive epidemiological studies have shown that saccharin intake is not related to bladder cancer in humans.
The WHO has set a temporary acceptable daily intake for saccharin, including its calcium, potassium, and sodium salts, at up to 2.5 mg/kg body-weight. In the UK, the Committee on Toxicity of Chemicals in Food, Consumer Products, and the Environment (COT) has set an acceptable daily intake for saccharin and its calcium, potassium, and sodium salts (expressed as saccharin sodium) at up to 5 mg/kg body-weight.
Adverse reactions to saccharin, although relatively few in relation to its widespread use, include: urticaria with pruritus following ingestion of saccharin-sweetened beverages and photosensitization reactions.
LD50 (mouse, oral): 17.5 g/kg
LD50 (rat, IP): 7.10 g/kg
LD50 (rat, oral): 14.2 g/kg

Potential Exposure

The information provided has to do, primarily, with the manufacturing of saccharin. Saccharin has been used as a nonnutritive sweetening agent. At one point the United States consumption pattern for all forms of saccharin has been estimated as 45% in soft drinks; 18% in tabletop sweeteners; 14% in fruits, juices, sweets, chew- ing gum, and jellies; 10% in cosmetics and oral hygiene products; 7% in drugs, such as coating on pills; 2% in tobacco; 2% in electroplating; and 2% for miscellaneous uses. Human exposure to saccharin occurs primarily through ingestion because of its use in many dietic foods and drinks and some personal hygiene products, including toothpastes and mouthwashes. The general public is exposed to saccharin, especially by persons required to reduce sugar intake.

storage

Saccharin is stable under the normal range of conditions employed in formulations. In the bulk form it shows no detectable decomposition and only when it is exposed to a high temperature (125°C) at a low pH (pH 2) for over 1 hour does significant decomposition occur. The decomposition product formed is (ammonium-o-sulfo)benzoic acid, which is not sweet. The aqueous stability of saccharin is excellent.
Saccharin should be stored in a well-closed container in a dry place.

Shipping

UN3077 Environmentally hazardous substances, solid, n.o.s., Hazard class: 9; Labels: 9-Miscellaneous haz- ardous material, Technical Name Required.

Purification Methods

Purify saccharin by recrystallisation from Me2CO [solubility 7.14% at 0o, 14.4% at 50o], or aqueous isoPrOH to give a fluorescent solution. It sublimes in vacuo. It is an artificial sweetner and is 500 times sweeter than sucrose. [DeGarmo et al. J Am Pharm Assoc (Sci Ed) 41 17 1952, Beilstein 27 H 168, 870, 27 I 266, 27 II 214, 27 III/IV 2649.]

Incompatibilities

Saccharin can react with large molecules, resulting in a precipitate being formed. It does not undergo Maillard browning.

Incompatibilities

Dust may form explosive mixture with air. Incompatible with strong oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, and epoxides.

Waste Disposal

Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contami- nant (≥100 kg/mo) must conform to EPA regulations governing storage, transportation, treatment, and waste disposal.

Regulatory Status

Accepted for use as a food additive in Europe. Note that the EU number ‘E954’ is applied to both saccharin and saccharin salts. Included in the FDA Inactive Ingredients Database (oral solutions, syrups, tablets, and topical preparations). Included in nonparenteral medicines licensed in the UK. Included in the Canadian List of Acceptable Non-medicinal Ingredients.

More
Less

Saccharin Suppliers

Shanghai Huichu Chemical Technology Co., Ltd
Tel
021-57188992 13917817467
Fax
021-5718892
Email
190994148@qq.com
Country
China
ProdList
65
Advantage
58
Hangzhou Xingui Industrial Co., Ltd.
Tel
0571-86692169 15397065278
Email
476137679@qq.com
Country
China
ProdList
33
Advantage
58
Shandong Fengtai Biotechnology Co., Ltd.
Tel
0531-0531-82066716 15662658391
Fax
0531-82066716
Email
528732991@qq.com
Country
China
ProdList
1022
Advantage
58
J & K SCIENTIFIC LTD.
Tel
010-82848833 400-666-7788
Fax
86-10-82849933
Email
jkinfo@jkchemical.com
Country
China
ProdList
96815
Advantage
76
Meryer (Shanghai) Chemical Technology Co., Ltd.
Tel
021-61259108 18621169109
Fax
86-21-61259102
Email
market03@meryer.com
Country
China
ProdList
40228
Advantage
62
3B Pharmachem (Wuhan) International Co.,Ltd.
Tel
821-50328103-801 18930552037
Fax
86-21-50328109
Email
3bsc@sina.com
Country
China
ProdList
15839
Advantage
69
Alfa Aesar
Tel
400-6106006
Fax
021-67582001/03/05
Email
saleschina@alfa-asia.com
Country
China
ProdList
30123
Advantage
84
TCI (Shanghai) Development Co., Ltd.
Tel
021-67121386
Fax
021-67121385
Email
Sales-CN@TCIchemicals.com
Country
China
ProdList
24529
Advantage
81
Beijing HwrkChemical Technology Co., Ltd
Tel
010-89508211 18501085097
Fax
010-89508210
Email
sales.bj@hwrkchemical.com
Country
China
ProdList
8418
Advantage
55
Energy Chemical
Tel
021-021-58432009 400-005-6266
Fax
021-58436166
Email
sales8178@energy-chemical.com
Country
China
ProdList
44688
Advantage
61
Beijing Ouhe Technology Co., Ltd
Tel
010-82967028 13552068683
Fax
+86-10-82967029
Email
2355560935@qq.com
Country
China
ProdList
12390
Advantage
60
Shanghai Hanhong Scientific Co.,Ltd.
Tel
021-54306202 13764082696
Email
info@hanhongsci.com
Country
China
ProdList
42958
Advantage
64
Chemsky(shanghai)International Co.,Ltd.
Tel
021-50135380
Email
shchemsky@sina.com
Country
China
ProdList
32321
Advantage
50
Shandong Xiya Chemical Co., Ltd
Tel
4009903999 13355009207
Fax
0539-6365991
Email
3007715519@qq.com
Country
China
ProdList
18738
Advantage
57
Sichuan Kulinan Technology Co., Ltd
Tel
400-1166-196 18981987031
Fax
028-84555506 800101999
Email
cdhxsj@163.com
Country
China
ProdList
11707
Advantage
57
Tianjin heowns Biochemical Technology Co., Ltd.
Tel
400 638 7771
Email
sales@heowns.com
Country
China
ProdList
14435
Advantage
57
Sinopharm Chemical Reagent Co,Ltd.
Tel
86-21-63210123
Fax
86-21-63290778 86-21-63218885
Email
sj_scrc@sinopharm.com
Country
China
ProdList
9815
Advantage
79
Maya High Purity Chemicals
Tel
+86 (573) 82222445 (0)18006601000 452520369
Fax
+86 (573) 82222643
Email
sales@maya-r.com
Country
China
ProdList
11707
Advantage
57
Spectrum Chemical Manufacturing Corp.
Tel
021-021-021-67601398-809-809-809 15221380277
Fax
021-57711696
Email
marketing_china@spectrumchemical.com
Country
China
ProdList
9658
Advantage
60
Dalian Meilun Biotech Co., Ltd.
Tel
0411-62910999 13889544652
Email
meilunui@163.com
Country
China
ProdList
4727
Advantage
58
ShangHai YuanYe Biotechnology Co., Ltd.
Tel
021-61312847 13636370518
Fax
021-55068248
Email
shyysw007@163.com
Country
China
ProdList
4940
Advantage
60
Chengdu Ai Keda Chemical Technology Co., Ltd.
Tel
4008-755-333 18080918076
Fax
028-86757656
Email
800078821@qq.com
Country
China
ProdList
9718
Advantage
55
T&W GROUP
Tel
021-61551611 13296011611
Fax
+86 21-50676805
Email
contact@trustwe.com
Country
China
ProdList
9895
Advantage
58
Shanghai civi chemical technology co.,Ltd
Tel
86-21-34053660
Fax
86-21-34053661
Email
sale@labgogo.com
Country
China
ProdList
9865
Advantage
52
Thermo Fisher Scientific
Tel
800-810-5118
Fax
+86-10-84193589
Email
cnchemical@thermofisher.com
Country
China
ProdList
17770
Advantage
75
Beijing HuaMeiHuLiBiological Chemical
Tel
010-56205725
Fax
010-65763397
Email
waley188@sohu.com
Country
China
ProdList
12335
Advantage
58
Beijing innoChem Science & Technology Co.,Ltd.
Tel
400-810-7969 010-59572699
Fax
010-59572688
Email
ningzi.li@inno-chem.com.cn
Country
China
ProdList
6134
Advantage
55
Nanjing Norris-Pharm Technology Co., Ltd
Tel
13901585132
Fax
+86-25-52131256
Email
799750417@qq.com
Country
China
ProdList
8878
Advantage
55
9ding chemical ( Shanghai) Limited
Tel
4009209199
Fax
86-021-52271987
Email
sales@9dingchem.com
Country
China
ProdList
18209
Advantage
56
Shanghai Aladdin Bio-Chem Technology Co.,LTD
Tel
400-400-6206333 18521732826
Fax
021-50323701
Email
market@aladdin-e.com
Country
China
ProdList
25003
Advantage
65
The future of Shanghai Industrial Co., Ltd.
Tel
021-61552785
Fax
021-55660885
Email
sales@shshiji.com
Country
China
ProdList
9545
Advantage
55
Chengdu AstaTech Trading Co., Ltd./AstaTech (Chengdu) Pharma. Co., Ltd.
Tel
+86-28-85122536 85324413
Fax
+86-28-85326443
Email
market@astatech.cn
Country
China
ProdList
8026
Advantage
55
TargetMol Chemicals Inc.
Tel
021-021-33632979 15002134094
Fax
021-33632979
Email
marketing@targetmol.com
Country
China
ProdList
7783
Advantage
58
Vientiane Tianjin Hengyuan Technology Co., Ltd.
Tel
15722085254
Fax
022-26358246
Email
phytochemical@126.com
Country
China
ProdList
813
Advantage
55
Bide Pharmatech Ltd.
Tel
400-164-7117 13681763483
Fax
+86-21-61629029
Email
product02@bidepharm.com
Country
China
ProdList
41462
Advantage
60
Shanghai DiBai Chemicals Co., Ltd.
Tel
021-54359730 400-008-9730
Fax
021-54353864
Email
info@chemxyz.com
Country
China
ProdList
3991
Advantage
60
ChemStrong Scientific Co.,Ltd
Tel
0755-0755-66853366 13670046396
Fax
0755-28363542
Email
sales@chem-strong.com
Country
China
ProdList
18042
Advantage
56
Chengdu HuaXia Chemical Reagent Co. Ltd
Tel
400-1166-196 13458535857
Fax
QQ:800101999
Email
cdhxsj@163.com
Country
China
ProdList
13350
Advantage
58
Shanghai Macklin Biochemical Co.,Ltd.
Tel
15221275939 15221275939
Fax
021-50706099
Email
shenlinxing@macklin.cn
Country
China
ProdList
16166
Advantage
55
Hangzhou J&H Chemical Co., Ltd.
Tel
0571-+86-571-87396432
Fax
0571-87396431
Email
sales@jhechem.com
Country
China
ProdList
11481
Advantage
59
Shanghai Yongye Biotechnology Co., Ltd.
Tel
86-021-61559134 15921386130
Fax
021-55068248
Email
3423497944@qq.com
Country
China
ProdList
8144
Advantage
55
Chengdu RunZeBenTu Chemical Co., Ltd
Tel
13096311329 028-88469284 616445927
Fax
028-88469284
Email
616445927@qq.com
Country
China
ProdList
2874
Advantage
50
Credit Asia Chemical Co., Ltd.
Tel
+86 (21) 61124340
Fax
+86 (21) 6129-4103
Country
China
ProdList
9756
Advantage
58
Hubei Jusheng Technology Co.,Ltd
Tel
027-59599241 18871490274
Fax
027-59599241
Email
1400878000@qq.com
Country
China
ProdList
9958
Advantage
58
Chizhou Kailong Import and Export Trade Co., Ltd.
Tel
Fax
-
Email
xg01_gj@163.com
Country
China
ProdList
9484
Advantage
50
Changsha Jing Kang New Material Technology Co., Ltd.
Tel
0731-85118349 18874718518
Fax
0731-85118349
Email
ma_haihong@sina.com
Country
China
ProdList
1595
Advantage
50
Sigma-Aldrich
Tel
021-61415566 800-8193336
Email
orderCN@merckgroup.com
Country
China
ProdList
51456
Advantage
80
Quzhou Rundong Chemical (Technology) Co.
Tel
0570-8789886 18892685668
Fax
0570-8789985
Email
info@rundongchemical.com
Country
China
ProdList
3970
Advantage
60
Alta Scientific Co., Ltd.
Tel
022-6537-8550 15522853686
Fax
022-2532-9655
Email
sales@altasci.com.cn
Country
China
ProdList
4511
Advantage
55
Giant chemicals
Tel
028-85434334 18108076537
Fax
QQ:245797092
Email
market@gianthx.com
Country
China
ProdList
4505
Advantage
56
More
Less

View Lastest Price from Saccharin manufacturers

Watson Biotechnology Co.,Ltd
Product
Insoluble Saccharin 81-07-2
Price
US $35.00-7.50/kg
Min. Order
1kg
Purity
0.99
Supply Ability
20MT
Release date
2024-07-18
HebeiShuoshengImportandExportco.,Ltd
Product
Saccharin 81-07-2
Price
US $6.00/kg
Min. Order
1kg
Purity
99%
Supply Ability
2000KG/Month
Release date
2024-08-06
Hebei Longbang Technology Co., Ltd
Product
Saccharin 81-07-2
Price
US $6.00/KG
Min. Order
1KG
Purity
99%
Supply Ability
20TONS
Release date
2024-05-28

81-07-2, SaccharinRelated Search:


  • SACCHARIN
  • SACCHARIN 550X
  • SACCHARINE
  • SACCHARINE INSOLUBLE
  • SACCHARIN INSOLUBLE
  • SYNCAL (R) SDI
  • O-BENZOIC ACID SULFIMIDE
  • O-BENZOIC SULFIMIDE
  • O-SULFOBENZIMIDE
  • 1,1-Diox-1,2-benzisothiazol-3-one
  • 1,1-Dioxide,2,3-dihydro-3-oxobenxisosulfonazole
  • 1,1-Dioxide-1,2-benzisothiazol-3(2H)-one
  • 1,1-Dioxo-1,2-benzisothiazol-3(2H)-one
  • 1,1-Dioxo-1,2-dihydro-benzo[d]isothiazol-3-one
  • 1,2-Benzisothiaxol-3(2H)-one
  • 1,2-Benzisothiazol-3(2H)-one, 1,1-dioxide
  • 1,2-Benzisothiazol-3(2H)-one,1,1-dioxide
  • 1,2-benzisothiazol-3(2h)-one1,1-dioxide
  • 1,2-Benzisothiazolin-3-one, 1,1-dioxide
  • 1,2-benzisothiazolin-3-one,1,1-dioxide
  • 1,2-Benzisothiazoline-3-one 1,1-dioxide
  • 1,2-benzisothiazolinone,1,1-dioxide
  • 1,2-benzoisothiazolin-3-one1,1-dioxide
  • 1,2-Benzothiazol-3(2H)-one 1,1-dioxide
  • 1,2-Dihydro-2-ketobenzisosulphonazole
  • 2,3-Dihydro-1,2-benzoisothiazol-3-one-1,1-dioxide
  • 2,3-Dihydro-3-oxobenzisosulfonazole
  • 2,3-Dihydro-3-oxobenzisosulphonazole
  • 2-Sulfobenzoicimide
  • 2-Sulphobenzoic imide
  • 2-sulphobenzoicimide
  • 3-Benzisothiazolinone 1,1-dioxide
  • fobenzimide
  • o-SuL
  • Saccharin, Powder
  • Saccharin,2,3-Dihydroxy-1,2-benzisothiazol-3-one-1,1-dioxide, 2-Sulfobenzoic acid imide, o-Benzoic sulfimide
  • Saccharin (200 mg)
  • 1,2-Dihydro-2-ketobenzisosu
  • Saccharin, 98+% 100GR
  • o-Benzoic Sulfimide Saccharin
  • SACCHARIN(P)
  • Benzo[d]isothiazol-3(2H)-one 1,1-dioxide
  • o-SulfobenziMide, 99.0%
  • o-Benzoic acid sulfiMide (Saccharin)
  • Mettler-Toledo Calibration substance ME 51143091, Saccharin
  • 1, 2-benzisothiazole-3(2H)-one, 1,1-dioxide
  • Benzo[d]isothiazol-3(2H)
  • High purity insoluble saccharin
  • crystal insoluble saccharin
  • 3-benzisothiazolinone1,1-dioxide
  • 3-Hydroxybenzisothiazole S,S-dioxide
  • 3-hydroxybenzisothiazole-s,s-dioxide
  • 550 Saccharine
  • Benzisosulfonazole, 2,3-dihydro-3-oxo-
  • Benzo-2-sulfiide
  • Benzo-2-sulphimide
  • Benzoic sulfimide
  • benzoicsulfimide