ChemicalBook > CAS DataBase List > Kavakavaresin

Kavakavaresin

Product Name
Kavakavaresin
CAS No.
9000-38-8
Chemical Name
Kavakavaresin
Synonyms
KAWA;KAVARESIN;Kavalactone;KAVAEXTRACTS;Cavanolactone;Kavakavaresin USP/EP/BP;Kava Extract, 30% by HPLC;Kava extract kava lactone;TIANFU-CHEM- Kavakavaresin;Ashwagandha Ayurvedic Extract
CBNumber
CB11074733
Molecular Formula
C14H16O3
Formula Weight
232.27504
MOL File
9000-38-8.mol
More
Less

Kavakavaresin Property

InChI
InChI=1S/C14H16O3/c1-16-13-9-12(17-14(15)10-13)8-7-11-5-3-2-4-6-11/h3,5-8,10,12H,2,4,9H2,1H3/b8-7+
InChIKey
OMNGEVNATYFZGG-BQYQJAHWSA-N
SMILES
C1(/C=C/C2C=CCCC=2)OC(=O)C=C(OC)C1
IARC
2B (Vol. 108) 2016
More
Less

Safety

Hazardous Substances Data
9000-38-8(Hazardous Substances Data)
More
Less

Hazard and Precautionary Statements (GHS)

More
Less

N-Bromosuccinimide Price

American Custom Chemicals Corporation
Product number
RES0000599
Product name
KAVAKAVARESIN
Purity
95.00%
Packaging
5MG
Price
$499.36
Updated
2021/12/16
More
Less

Kavakavaresin Chemical Properties,Usage,Production

Description

Kava or Piper methysticum is a shrub of the pepper family, native to Micronesia, Melanesia, and Polynesia. There are approximately 150 different cultivars with different content and composition of active ingredients, consequently resulting in different intoxicating effects after ingestion. On average, the kava lactones account for 3–20% of dry weight of the kava root and have relatively low solubility in water. The active components of kava are mostly contained in the lipid-soluble resin where the lactones account for approximately 96%.
lactones varies according to the plant parts and the kava species used for extraction. The aerial parts of the shrub contain a relatively higher amount of alkaloids and are generally avoided in traditional preparations.
Traditionally, extractions are made with cold water or coconut milk from macerated dry or fresh root. Due to the low water solubility of the lactones, commercial kava products such as herbal supplements are made from organic solvents (i.e., acetone and ethanol).
During the 1990s, kava became very popular in Western countries resulting in increased import and demand. Following this popularity boom, a number of suspected kava-induced hepatotoxic events were reported. Kava preparations were banned in a number of European countries and the US Food and Drug Administration (FDA) issued warnings.

Uses

Aqueous extracts from the root of kava has been used for centuries in the South Pacific. The extract is used as a ceremonial and intoxicating drink, but has also been used as a medicine for various illnesses, including migraines and bladder disorders. The pharmacologically active compounds are the kava lactones, which allegedly possess analgesic, anticonvulsive, spasmolytic, and antimycotic effects.
In Western countries, organic kava extracts have gained popularity in the twentieth century as herbal supplements for treating anxiety and insomnia.

Biological Activity

Kavakavaresin is a synthetic drug that inhibits the activity of the polymerase chain reaction.

Toxicity evaluation

Mechanisms of action to explain kava’s pharmacological and toxicological properties are still incompletely understood. Known side effects are relatively mild and include allergic reactions and gastrointestinal complaints. Kava dermopathy is a well-recognized symptom in heavy kava users. It appears after weeks of ingestion as a scaly rash; however, the skin returns to normal upon cessation. There is an apparent dose–response relationship and the prevalence in heavy kava users has been reported to be 78%.
Amore serious issue is suspectedkava-induced hepatotoxicity. This has resulted in extensive studies of kava lactones, chalcones, and alkaloids. To date, there are no indisputable explanations and, due to the lack of dose dependency, kava-induced hepatotoxicity has been classified as idiosyncratic, possibly with involvement of the immune system.
Ninety-three cases of suspected kava-induced hepatotoxicity have been reviewed by the World Health Organization (WHO). However, in most cases the information was inadequate to determine whether hepatotoxicity was caused by kava. The reported symptoms were hepatitis, hepatic failure, cholestatic hepatitis, jaundice, abnormal hepatic function, and cirrhosis. The outcome in seven of the reviewed cases was death and 14 of the cases resulted in liver transplant. The mean duration to onset was 111 days and positive rechallenge tests were seen in five patients.
The form of kava use in the South Pacific and in Aboriginal communities is apparently not associated with the hepatotoxicity reported in Western countries. Elevated liver enzymes (gammaglutamyl transferase (GGT) and alkaline phosphatase (ALP)) have been reported in these kava users, consuming an average 118 g week-1. The symptoms were reversible upon cessation.
Involvement of glutathione (GSH) and possibly depletion of endogenous GSH has been proposed to be involved in the toxic mechanism. A recent study revealed that in vitro toxicity of kava and acetaminophen (APAP) was intensified by coadministration. Toxicity of APAP is due to formation of a reactive metabolite causing depletion of GSH. The increase in toxicity when kava was coadministered suggests that GSH somehow could be involved in detoxification of kava.
The possibility of kava acting as an inhibitor of specific metabolic enzymes has been investigated. In vitro results have shown that kava is indeed capable of altering the metabolic capacity of a number of P-450 enzymes; however, the relation to hepatotoxicity remains unclear.
Flavokavains have been identified as the most potent cytotoxic compounds in kava. Recently, the flavokavains gained attention as they have shown apoptotic effects on cancer cells. Among others, the targets include nuclear factor kappa beta (NF-kB), Bax, reactive oxygen species, and growth arrest and DNA-damage-inducible protein (GADD153). Like the lactones, these compounds have very low solubility in water. Thus, an organic extract would be expected to contain much higher concentrations than an aqueous extract. The toxicity of flavokavains is yet to be examined in vivo.
Poor quality kava products have been accused of being involved in the increased prevalence of kava-induced hepatotoxicity in Western countries. Due to the popularity boom, aerial parts of the shrub allegedly have been included in the material used to produce commercial kava preparations. Aerial parts are generally avoided in the South Pacific as they contain a relatively high amount of alkaloids such as pipermethystine, which has been reported to decrease cellular ATP levels and mitochondrial membrane potential and induce apoptosis in human HepG2 cells. Pipermethystine has, however, not been identified in commercial products in clinically significant amounts.
Another aspect of poor quality kava has recently been addressed. It has been proposed that, due to high temperatures and humidity in the South Pacific, mold would be able to develop rapidly in kava plant material not stored correctly. It has been suggested consequently that hepatotoxins including aflatoxins could be present in poor quality kava plant material.

Kavakavaresin Preparation Products And Raw materials

Raw materials

Preparation Products

More
Less

Kavakavaresin Suppliers

Waterstone Technology, LLC
Tel
--
Fax
--
Email
sales@waterstonetech.com
Country
United States
ProdList
6786
Advantage
30
More
Less

View Lastest Price from Kavakavaresin manufacturers

Hebei Zhuanglai Chemical Trading Co Ltd
Product
Kava Extract Kavakavaresin Powder 9000-38-8
Price
US $150.00/kg
Min. Order
1kg
Purity
99%
Supply Ability
500kg
Release date
2024-11-18
Hebei Longbang Technology Co., Ltd
Product
Kavakavaresin 9000-38-8
Price
US $6.00/kg
Min. Order
1kg
Purity
More than 99%
Supply Ability
2000KG/Month
Release date
2024-05-22
Hebei Jingbo New Material Technology Co., Ltd
Product
Kavakavaresin 9000-38-8
Price
US $7.00/kg
Min. Order
1kg
Purity
99%
Supply Ability
20000
Release date
2023-12-07

9000-38-8, KavakavaresinRelated Search:


  • KAVAEXTRACTS
  • KAVARESIN
  • Kava Extract, 30% by HPLC
  • Kavalactone
  • Kava extract kava lactone
  • 2-[(E)-2-cyclohexa-1,5-dien-1-ylethenyl]-4-methoxy-2,3-dihydropyran-6-one
  • Ashwagandha Ayurvedic Extract
  • KAWA
  • Kavakavaresin USP/EP/BP
  • TIANFU-CHEM- Kavakavaresin
  • (E)-6-(2-(cyclohexa-1,5-dien-1-yl)vinyl)-4-methoxy-5,6-dihydro-2H-pyran-2-one
  • Cavanolactone
  • Kava Extract Kavakavaresin Powder
  • 9000-38-8
  • 90000-38-8