ChemicalBook > CAS DataBase List > Polystyrene

Polystyrene

Product Name
Polystyrene
CAS No.
9003-53-6
Chemical Name
Polystyrene
Synonyms
LATEX;3A;POLYSTYRENE RESIN;KB;styrofoam;POLYSTRENE;POLYSTYRENE LATEX;rexolite1422;POLYSTYRENE STANDARD;r3
CBNumber
CB4146768
Molecular Formula
[CH2CH(C6H5)]n
Formula Weight
2.01588
MOL File
9003-53-6.mol
More
Less

Polystyrene Property

Melting point:
212 °C
Boiling point:
30-80 °C
Tg
100
Tg
35
Density 
1.06 g/mL at 25 °C
refractive index 
n20/D 1.5916
Flash point:
>230 °F
storage temp. 
2-8°C
solubility 
Chloroform (Slightly, Sonicated)
form 
powder
color 
White
Water Solubility 
insoluble
Dielectric constant
24.0(Ambient)
Stability:
Stable. Combustible. Incompatible with strong oxidizing agents.
InChIKey
ZJMWRROPUADPEA-UHFFFAOYSA-N
CAS DataBase Reference
9003-53-6
IARC
3 (Vol. 19, Sup 7) 1987
NIST Chemistry Reference
Polystyrene(9003-53-6)
EPA Substance Registry System
Polystyrene (9003-53-6)
More
Less

Safety

Hazard Codes 
Xi
Risk Statements 
41
Safety Statements 
26-36/37/39-24/25
RIDADR 
2211
WGK Germany 
3
RTECS 
WL6475000
TSCA 
Yes
HazardClass 
9
PackingGroup 
III
HS Code 
39039000
More
Less

Hazard and Precautionary Statements (GHS)

Symbol(GHS)
Signal word
Warning
Hazard statements

H226Flammable liquid and vapour

H315Causes skin irritation

H319Causes serious eye irritation

H332Harmful if inhaled

H335May cause respiratory irritation

Precautionary statements

P261Avoid breathing dust/fume/gas/mist/vapours/spray.

P264Wash hands thoroughly after handling.

P264Wash skin thouroughly after handling.

P271Use only outdoors or in a well-ventilated area.

P280Wear protective gloves/protective clothing/eye protection/face protection.

P302+P352IF ON SKIN: wash with plenty of soap and water.

P304+P340IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing.

P305+P351+P338IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.

P312Call a POISON CENTER or doctor/physician if you feel unwell.

P321Specific treatment (see … on this label).

P332+P313IF SKIN irritation occurs: Get medical advice/attention.

P362Take off contaminated clothing and wash before reuse.

More
Less

N-Bromosuccinimide Price

Sigma-Aldrich
Product number
NIST705A
Product name
Polystyrene (narrow molecular weight distribution)
Purity
NIST? SRM? 705a
Packaging
5G
Price
$646
Updated
2024/03/01
Sigma-Aldrich
Product number
NIST1479
Product name
Polystyrene (narrow molecular weight distribution)
Purity
NIST? SRM? 1479
Packaging
2g
Price
$714
Updated
2024/03/01
Sigma-Aldrich
Product number
NIST1478
Product name
Polystyrene (narrow molecular weight distribution)
Purity
NIST? SRM? 1478
Packaging
2g
Price
$679
Updated
2024/03/01
Sigma-Aldrich
Product number
GF91132703
Product name
Polystyrene
Purity
(PS), film, thickness 0.19?mm, L 1?m, clear clear
Packaging
1EA
Price
$210
Updated
2024/03/01
Sigma-Aldrich
Product number
GF72602300
Product name
Polystyrene
Purity
(PS), film, thickness 0.19?mm, L 0.5?m, clear clear
Packaging
1EA
Price
$194
Updated
2024/03/01
More
Less

Polystyrene Chemical Properties,Usage,Production

Chemical Properties

Poly(styrene) is white powder or beads, or clear solid.Polystyrene is rigid with excellent dimensional stability, has good chemical resistance to aqueous solutions, and is an extremely clear material.
Impact polystyrene contains polybutadiene added to reduce brittleness. The polybutadiene is usually dispersed as a discrete phase in a continuous polystyrene matrix. Polystyrene can be grafted onto rubber particles, which assures good adhesion between the phases.

Chemical Properties

The specific gravity of general purpose and impact polystyrene is 1.05. It can vary for copolymers. It is higher for some specialty grades. Density varies slightly with pressure, but for practical purposes, the polymer is noncompressible. In terms of heat-resistance, deflection temperatures range from about 66 to 99 °C (170 to 215 °F), depending upon the formulation. Continuous resistance to heat for polystyrene is usually 60 to 80 °C (140 to 175 °F). Time and load have a significant influence on the useful service temperature of a part.
Polystyrene is nontoxic when free from additives and residuals. It has no nutritive value and does not support fungus or bacterial growth. Dimensional stability of polystyrene resins is excellent. Mold shrinkage is small. The low moisture absorption (about 0.02%) allows fabricated parts to maintain dimensions and strength in humid environments.
General-purpose polystyrene is water white, and transmission of visible light is about 90%. Modifiers reduce this property, and translucence results. The refractive index is about 1.59; critical angle about 39. Polystyrene molecules do not have the same optical properties in all directions. When molecules become oriented in a given direction during fabrication, a double refraction occurs and a birefringence effect can be observed if the part is examined through a polarized lens under a polarized light source. Injection moldings often exhibit birefringence in a random pattern.

Uses

Packaging film; molded parts for automobiles, appliances, housewares, etc.; wire and cable coat- ing; food container closures; coated and laminated products; bottles; artificial grass and turfs; plastic pipe; wearing apparel (acid-dyed); fish nets; sur- gical casts; strapping; synthetic paper; reinforced plastics; nonwoven disposable filters.

Uses

Containers, tubs, and trays formed from extruded impact polystyrene sheets are used for packaging a large variety of food. Biaxially oriented polystyrene film is thermoformed into blister packs, meat trays, container lids, and cookie, candy, pastry, and other food packages where clarity is required.
Housewares is another large segment of the use of polystyrenes. Refrigerator door liners and furniture panels are typical thermoformed impact polystyrene applications. Extruded profiles of solid or foamed impact polystyrene are used for mirror or picture frames, and moldings for construction applications.
General-purpose polystyrene is extruded either clear or embossed for room dividers, shower doors, glazings, and lighting applications. Injection molding of impact polystyrene is used for household items, such as flower pots, personal care products, and toys. General-purpose polystyrene is used for cutlery, bottles, combs, disposable tumblers, dishes, and trays. Injection blow molding can be used to convert polystyrene into bottles, jars, and other types of open containers.
Impact polystyrene with ignition-resistant additives is used for appliance housings, such as those for television and small appliances. Structural foam impact polystyrene modified with flame-retardant additives is used for business machine housings and in furniture because of its decorability and ease of processing. Consumer electronics, such as cassettes, reels, and housings, is a fast growing area for use of polystyrenes. Medical applications include sample collectors, petri dishes, and test tubes. In an effort to make homes and other buildings more energy efficient, the use of polystyrenes in extruded foam board with flame-retardant additives for walls and under slabs has experienced exceptional growth in recent years. Used as a sheeting material, extruded foam board complies with the requirements of the major building codes as well as federal and military specifications.

Uses

Polystyrene latex microspheres are utilized in flow cytometry, fluorescence microscopy, and as calibration particles. It finds a use in the detection of trace amounts of antigens or antibodies in serum, urine, and cerebro-spinal fluids. It is also employed as a stimulus responsive particulate emulsifier for oil-in-water emulsion.

Preparation

Styrene may be polymerized by means of all four techniques by bulk, solution, suspension and emulsion polymerization. Each of these methods is practised commercially, but solution polymerization is now the most extensively used. The four processes are described below.
(a) Bulk polymerization
In a common type of process, styrene is partially polymerized batch-wise by heating the monomer (without added initiator) in large vessels at about 80°C for 2 days until about 35% conversion is attained. The viscous solution of polymer in monomer is then fed continuously into the top of a tower which is some 25 feet high. The top of the tower is maintained at a temperature of about 100°C, the centre at about 150°C and the bottom at about 180°C. As the feed material traverses the temperature gradient, polymerization occurs and fully polymerized material emerges from the base of the tower. The reaction is controlled by a complex array of heating and cooling jackets and coils with which the tower is fitted. The molten material is fed into an extruder, extruded as filament and then cooled and chopped into granules. Since the product contains few impurities, it has high clarity and good electrical insulation properties. The polymer has a broader molecular weight distribution than polymer prepared at one temperature.
(b) Solution polymerization
Continuous solution processes have found wide commercial utilization, the main advantage over bulk methods being a lessening of the problems associated with the movement and heat transfer of viscous masses. However, the technique does require the added steps of solvent removal and recovery. Typically, a mixture of monomer, solvent (3-12% ethylbenzene) and initiator is fed into a train of three polymerization reactors, each with several heating zones. The reaction temperature is progressively increased, rising from 110-130°C in the first reactor to 150-170°C in the last. The polymer solution is then extruded as fine strands into a devolatilizing vessel. In this vessel, which is at a temperature of 225°C, removal of solvent and unreacted monomer takes place, being aided by the large surface area of the strands. The molten material is fed into an extruder, extruded as filament, cooled and chopped. It may be noted that this type of process is commonly regarded as a continuous bulk process since the amount of solvent used is so small.
(c) Suspension polymerization
Suspension processes simplify the heat transfer problems associated with bulk methods and, unlike solution methods, they do not involve solvent removal and recovery. The disadvantages of the suspension technique are that it requires the added step of drying and it does not readily lend itself to continuous operation. Typically, polymerization is carried out batch-wise in a stirred reactor, jacketed for heating and cooling.
Reaction temperature is about 90°C. When polymerization is complete, the product, in the form of a slurry, is washed with hydrochloric acid and water to remove suspending agent, centrifuged, dried in warm air (at about 60°C), extruded and chopped.
(d) Emulsion polymerization
Emulsion processes are not used for making solid grades of polystyrene. This is because these processes lead to polymer containing large quantities of soap residues which impair the electrical insulation properties and optical clarity. Emulsion polymerization does, however, find limited application in the production of polystyrene latex used in water-based surface coatings. The techniques employed are very similar to those used for other polymer latices, e.g. poly(vinyl acetate) latex.

Definition

ChEBI: A polymer composed of repeating ethyl benzene groups.

Definition

A synthetic polymer made from styrene (phenylethene). Expanded polystyrene is a rigid foam used in packing and insulation.

Definition

poly styrene: A clear glasslike materialmanufactured by free-radicalpolymerization of phenylethene(styrene) using benzoyl peroxide asan initiator. It is used as both a thermaland electrical insulator and forpacking and decorative purposes.

General Description

Polystyrene (for GPC, 4,000) is a synthetic thermoplastic, that is attractive for a wide range of applications because of its properties such as low cost, rigidity, low specific weight, high chemical resistance, mechanical flexibility, biocompatibility and good processability.

Hazard

Questionable carcinogen.

Industrial uses

Polystyrene is brittle at room temperature,becomes soft at 80°C, and is often modified bycopolymerization. Traditionally, it is used infilm form for capacitors, and it remains competitivefor this application. Poly styrene is alsoused for coaxial-cable insulation, but in woundstrip or bead form, because the solid is not veryflexible.

Safety Profile

Questionable carcinogen with experimental tumorigenic data by implant. When heated to decomposition it emits acrid smoke and irritating fumes. See also POLYMERS, IN SOLUBLE.

Solubility in organics

Benzene, MEK, THF, toluene, xylene

Purification Methods

Precipitate polystyrene repeatedly from CHCl3 or toluene solution by addition of MeOH. Dry it in vacuo. [Miyasaka et al. J Phys Chem 92 249 1988.]

More
Less

Polystyrene Suppliers

INEOS STYROLUTION GROUP GMBH
Tel
--
Fax
--
Email
buntinxr@ineos-styrolution.com
Country
Germany
ProdList
7
Advantage
58
ABCR GmbH & CO. KG
Tel
--
Fax
--
Email
info@abcr.de
Country
Germany
ProdList
6831
Advantage
75
IRIS Biotech GmbH
Tel
--
Fax
--
Country
Germany
ProdList
4426
Advantage
68
Service Chemical Inc.
Tel
--
Fax
--
Email
sales@chemos-group.com
Country
Germany
ProdList
6350
Advantage
71
More
Less

View Lastest Price from Polystyrene manufacturers

Hebei Longbang Technology Co., Ltd
Product
Polystyrene 9003-53-6
Price
US $6.00/KG
Min. Order
1KG
Purity
99%
Supply Ability
20TONS
Release date
2024-08-27
HebeiShuoshengImportandExportco.,Ltd
Product
Polystyrene 9003-53-6
Price
US $6.00/kg
Min. Order
1kg
Purity
99%
Supply Ability
2000KG/Month
Release date
2024-08-12
Hebei Zhuanglai Chemical Trading Co Ltd
Product
Polystyrene 9003-53-6
Price
US $10.00/kg
Min. Order
1kg
Purity
99%
Supply Ability
20 ton
Release date
2024-11-15

9003-53-6, PolystyreneRelated Search:


  • POLYSTYRENE STANDARD 2'000 CERTIFIED &
  • POLYSTYRENE, BEADS, AVERAGE DIAMETER 0.4 6UM, 10 WT. % DISPERSION IN WATER
  • MALDI VALIDATION SET POLYSTYRENE MP 500- 70000 CERTIFIED
  • POLYSTYRENE STANDARD 200'000
  • Polystyrene standard, for GPC, typical MW 2,000,000
  • Polystyrene standard, for GPC, typical MW 4,000
  • POLYSTYRENE STANDARD 650000 CERTIFIED AC C. TO DIN
  • Polystyrene standard, for GPC, typical MW 50,000
  • Polystyrene, melt index 6.0-9.0
  • HILLEX MICROCARRIER BEADS &
  • POLYSTYRENE, BEADS, AVERAGE DIAMETER 0.6 UM, 10 WT. % DISPERSION IN WATER
  • POLYSTYRENE STANDARD 250000 CERTIFIED AC C. TO DIN
  • POLYSTYRENE STANDARD KIT CONTAINING 13&
  • POLYSTYRENE STANDARD 3'000 CERTIFIED &
  • POLYSTYRENE STANDARD BROAD 350'000 CERT. REF. MAT. ACC. BAM
  • POLYSTYRENE STANDARD BROAD 206'000 CERT. REF. MAT. ACC. BAM
  • Polystyrene standard 4'000
  • POLYSTYRENE, BEADS, AVERAGE DIAMETER 0.3 UM, 10 WT. % DISPERSION IN WATER
  • POLYSTYRENE STANDARD 5'000
  • CHROMOSORB 103,80/100,50G
  • Polystyrene standard, for GPC, typical MW 35,000
  • POLYSTYRENE, SECONDARY STANDARD
  • MTO-CHROMOSORB 106, 80/100 MESH, 50GM
  • Polystyrene standard, for GPC, typical MW 600,000
  • MTO-CHROMOSORB 103, 100/120 MESH, 50GM
  • POLYSTYRENE STANDARD 10'000
  • Polystyrene standard, for GPC, typical MW 400,000
  • POLYSTYRENE STANDARD 150'000
  • CHROMOSORB 102,100/120 50G
  • POLYSTYRENE, BEADS, AVERAGE DIAMETER 1.1 UM, 10 WT. % DISPERSION IN WATERU
  • POLYSTYRENE, AVERAGE MW CA. 280,000 (GPC )
  • CHROMOSORB 106, 60/80 MESH, 50GM
  • POLYSTYRENE STANDARD 1000000 CERTIFIED A CC. TO DIN
  • POLYSTYRENE STANDARD 1'000
  • POLYSTYRENE, ISOTACTIC, AVERAGE MW CA. 4 00,000 (GPC)
  • Polystyrene standard, for GPC, typical MW 13,000
  • POLYSTYRENE STANDARD 3'000
  • Polystyrene standard, for GPC, typical MW 800
  • STANDARD MW 90000
  • General-purpose and impact modified
  • Polystyrene resins (GP/HIPS)
  • Poly(styrene), average M.W. 250.000
  • Poly(styrene), secondary standard, M.W. 288.800/ M.N. 131.500
  • polystrene standard 88'000
  • polystrene standard broad 206'000
  • polystrene standard broad 350'000
  • polystyrene latex microsphere, 0.10 micron
  • polystyrene latex microsphere, 0.20 micron
  • polystyrene latex microsphere, 0.50 micron
  • polystyrene latex microsphere, 1 micron
  • polystyrene latex microsphere, 2 micron
  • polystyrene latex microsphere, 6.0 micron
  • polystyrene latex microsphere, 75.0 micron
  • polystyrene latex microsphere, 0.75 micron
  • polystyrene latex microsphere, fluorescent, 6.0 micron
  • polystyrene solution
  • polystyrene latex microsphere, 1 micron, dry form
  • polystyrene latex microsphere, 25.0 micron