Basic information Chemical properties Uses What Is Lauric Acid? Including Lauric Acid in Your Diet Toxicity Usage limits Medium-Chain Triglycerides Production methods Uses in Perfume Safety Supplier Related
ChemicalBook >  Product Catalog >  Chemical Reagents >  Organic reagents >  fatty acid >  Lauric acid

Lauric acid

Basic information Chemical properties Uses What Is Lauric Acid? Including Lauric Acid in Your Diet Toxicity Usage limits Medium-Chain Triglycerides Production methods Uses in Perfume Safety Supplier Related

Lauric acid Basic information

Product Name:
Lauric acid
Synonyms:
  • Emery651
  • Dodecanoic Acid(C12:0)
  • Lauric acid 98%
  • yeuguisuan
  • Laurosteaic acid
  • Lauric acid 98-101 % (acidimetric)
  • lauric acid, pure
  • LAURIC ACID, 99.5+%
CAS:
143-07-7
MF:
C12H24O2
MW:
200.32
EINECS:
205-582-1
Product Categories:
  • Miscellaneous Natural Products
  • Alkylcarboxylic Acids
  • Biochemistry
  • Color Former & Related Compounds
  • Functional Materials
  • Higher Fatty Acids & Higher Alcohols
  • Monofunctional & alpha,omega-Bifunctional Alkanes
  • Monofunctional Alkanes
  • Saturated Higher Fatty Acids
  • Sensitizer
  • Biochemicals and Reagents
  • Building Blocks
  • C11 to C12
  • Carbonyl Compounds
  • Carboxylic Acids
  • Chemical Synthesis
  • Fatty Acids and conjugates
  • Fatty Acyls
  • Lipids
  • Organic Building Blocks
  • Straight Chain Fatty Acids
  • MES
  • 143-07-7
Mol File:
143-07-7.mol
More
Less

Lauric acid Chemical Properties

Melting point:
44-46 °C (lit.)
Boiling point:
225 °C/100 mmHg (lit.)
Density 
0.883 g/mL at 25 °C (lit.)
vapor pressure 
1 mm Hg ( 121 °C)
refractive index 
1.4304
FEMA 
2614 | LAURIC ACID
Flash point:
>230 °F
storage temp. 
2-8°C
solubility 
4.81mg/l
form 
Crystalline Powder of Flakes
pka
pKa 4.92(H2O,t =25.0) (Uncertain)
Specific Gravity
0.883
color 
White
Odor
at 100.00 %. mild fatty coconut bay oil
Odor Type
fatty
explosive limit
0.6%(V)
Water Solubility 
insoluble
λmax
207nm(MeOH)(lit.)
JECFA Number
111
Merck 
14,5384
BRN 
1099477
Stability:
Stable. Combustible. Incompatible with bases, oxidizing agents, reducing agents.
InChIKey
POULHZVOKOAJMA-UHFFFAOYSA-N
LogP
5
Dissociation constant
5.3 at 20℃
CAS DataBase Reference
143-07-7(CAS DataBase Reference)
NIST Chemistry Reference
Dodecanoic acid(143-07-7)
EPA Substance Registry System
Lauric acid (143-07-7)
More
Less

Safety Information

Hazard Codes 
Xi
Risk Statements 
36/38-41-36/37/38
Safety Statements 
37/39-26-39-36-36/39-24/25
WGK Germany 
1
RTECS 
OE9800000
Autoignition Temperature
250 °C
TSCA 
Yes
HS Code 
29159010
Hazardous Substances Data
143-07-7(Hazardous Substances Data)
Toxicity
LD50 i.v. in mice: 131 ±5.7 mg/kg (Or, Wretlind)

MSDS

More
Less

Lauric acid Usage And Synthesis

Chemical properties

Colorless needle-like crystals. Soluble in methanol, slightly soluble in acetone and petroleum ether.

Uses

1. lauric acid Used for the preparation of alkyd resins, as well as wetting agents, detergents and pesticides
2. Used for peeling vegetables and fruits with a maximum amount of 3.0g/kg.
3. Used as defoamer; GB 2760-86 provides for the spices allowed to use; used for the preparation of other food grade additives.
4. lauric acid is widely used in the surfactant industry and can be, according to the classification of surfactants, divided into cationic, anionic, non-ionic and amphoteric type. The surfactants types of dodecanoic acid are listed in the attached table of this item. Some surfactants of the derivatives of dodecanoic acid and dodecanol are also antiseptics, such as dodecyl dimethyl benzyl ammonium chloride (geramine), dodecyl dimethyl benzyl ammonium bromide (bromo-geramine) and dodecyl dimethyl (2-phenoxyethyl) ammonium bromide (domiphen bromide). The dodecyldimethyllammonium-2,4,5-trichlorophenolate in these derivatives can be used as citrus preservative. Dodecanoic acid also has many applications in plastic additives, food additives, spices and pharmaceutical industries.

What Is Lauric Acid?

Lauric acid is a medium-length long-chain fatty acid, or lipid, that makes up about half of the fatty acids within coconut oil. It’s a powerful substance that is sometimes extracted from the coconut for use in developing monolaurin. Monolaurin is an antimicrobial agent that is able to fight bacteria, viruses, yeasts, and other pathogens. Because you can’t ingest lauric acid alone (it’s irritating and not found alone in nature), you’re most likely to get it in the form of coconut oil or from fresh coconuts.
Though coconut oil is being studied at a breakneck pace, much of the research doesn’t pinpoint what in the oil is responsible for its reported benefits. Because coconut oil contains much more than just lauric acid, it would be a stretch to credit it with all of the coconut oil benefits. Still, a 2015 analysis suggests that many of the benefits tied to coconut oil are directly linked to lauric acid. Among the benefits, they suggest lauric acid could aid weight loss and even protect against Alzheimer’s disease. Its effects on blood cholesterol levels still need to be clarified.
This research suggests that the benefits of lauric acid are due to how the body uses it. The majority of lauric acid is sent directly to the liver, where it’s converted to energy rather than stored as fat. When compared with other saturated fats, lauric acid contributes the least to fat storage.

Including Lauric Acid in Your Diet

Lauric acid can be taken as a supplement, but it is most commonly consumed as part of coconut oil or palm kernel oil. It is considered to be safe based on the amounts generally found in food. According to NYU Langone Medical Center, coconut and palm kernel oil contain up to 15 percent MCTs, along with a number of other fats. However, because they are still pure oil, limit your intake of MCTs to stay within the recommended 5 to 7 teaspoons of oil per day as set out by the U.S. Department of Agriculture. You can use coconut and palm kernel oil for stir-fries because both oils withstand high heat. They can also be used in baking, adding a natural richness to your food.

Toxicity

Natural fatty acids, non-toxic.
Safe for use in food products (FDA, §172.860, 2000).
LD50 12 g/kg (rat, oral).

Usage limits

FEMA (mg/kg): soft drinks 15, cold drinks 16, candy 2.4, baked food 39, pudding class 25, oil 315.
GB 2760-1996: fruit and vegetable peeling 3.0g/kg.

Medium-Chain Triglycerides

Medium-chain triglycerides, or fatty acids, such as lauric acid, are characterized by a specific chemical structure that allows your body to absorb them whole. This makes them more easily digestible--your body processes them as it would carbohydrates, and they are used as a source of direct energy. Compared to long-chain triglycerides, the type in other saturated fats, MCTs have fewer calories per serving, roughly 8.3 calories per gram rather than the standard 9 calories per gram, according to an article in "Nutrition Review."

Production methods

1. Industrial production methods can be grouped into two categories: 1) derived from the saponification or high temperature and pressure decomposition of natural vegetable oils and fats; 2) separated from the synthetic fatty acid. Japan mainly uses coconut oil and palm kernel oil as the raw materials for the preparation of lauric acid. The natural vegetable oils used to produce dodecanoic acid include coconut oil, litsea cubeba kernel oil, palm kernel oil and mountain pepper seed oil. Other plants oil, such as palm kernel oil, tea tree seed oil and camphor tree seed oil, can also service industry to produce dodecanoic acid. The residual C12 distillate from the extraction of dodecanoic acid, containing a large number of dodecenoic acid, can be hydrogenated at atmospheric pressure, without catalyst, to convert into dodecanoic acid with a yield of more than 86%.
2. Derived from the separation and purification of coconut oil and other vegetable oil.
3. Lauric acid naturally exists in coconut oil, litsea cubeba kernel oil, palm kernel oil and pepper kernel oil in the form of glyceride. It can be derived from the hydrolysis of natural oils and fats in industry. The coconut oil, water and catalyst are added into the autoclave and hydrolyzed to glycerol and fatty acid at 250 ℃ under the pressure of 5MPa. The content of dodecanoic acid is 45%~80%, and can be further distilled to obtain dodecanoic acid.

Uses in Perfume

Lauric acid is used in Butter flavors and in certain Citrus flavor types, mainly in Lemon. The concentration used may vasy from 2 to 40 ppm, calculated upon the finished consumer product.

Description

Lauric acid, also known as dodecanoic acid, is a saturated fatty acid with a 12-carbon atom chain, thus falling into the medium chain fatty acids, is a white crystalline carboxylic acid with a faint odor of bay oil or soap. It has been found at high levels in coconut oil. Lauric acid induces the activation of NF-κB and the expression of COX-2, inducible nitric oxide synthase (iNOS), and IL-1α in RAW 264.7 cells when used at a concentration of 25 μM.

Physical properties

Lauric acid occurs as a white crystalline powder with a slight odor of bay oil or a fatty odor. It is a common constituent of most diets; large doses may produce gastrointestinal upset.

Chemical Properties

Like many other fatty acids, lauric acid is inexpensive, has a long shelf-life, and is non-toxic and safe to handle. It is mainly used for the production of soaps and cosmetics. For these purposes, lauric acid is neutralized with sodium hydroxide to give sodium laurate, which is a soap. Most commonly, sodium laurate is obtained by saponification of various oils, such as coconut oil. These precursors give mixtures of sodium laurate and other soaps.

Occurrence

Lauric acid, as a component of triglycerides, comprises about half of the fatty acid content in coconut oil, laurel oil, and in palm kernel oil (not to be confused with palm oil) , Otherwise it is relatively uncommon. It is also found in human breast milk ( 6.2 % of total fat), cow's milk (2.9%), and goat's milk (3.1 %).

Uses

Given its foaming properties, the derivatives of lauric acid (h-dodecanoic acid) are widely used as a base in the manufacture of soaps, detergents, and lauryl alcohol. Lauric acid is a common constituent of vegetable fats, especially coconut oil and laurel oil. It may have a synergistic effect in a formula to help fight against mircoorganisms. It is a mild irritant but not a sensitizer, and some sources cite it as comedogenic.

Uses

Lauric Acid is a fatty acid obtained from coconut oil and other veg- etable fats. it is practically insoluble in water but is soluble in alco- hol, chloroform, and ether. it functions as a lubricant, binder, and defoaming agent.

Uses

Intermediates of Liquid Crystals

Definition

ChEBI: Lauric acid is a straight-chain, twelve-carbon medium-chain saturated fatty acid with strong bactericidal properties; the main fatty acid in coconut oil and palm kernel oil. It has a role as a plant metabolite, an antibacterial agent and an algal metabolite. It is a straight-chain saturated fatty acid and a medium-chain fatty acid. It is a conjugate acid of a dodecanoate. It derives from a hydride of a dodecane.

Production Methods

Lauric acid is a fatty carboxylic acid isolated from vegetable and animal fats or oils. For example, coconut oil and palm kernel oil both contain high proportions of lauric acid. Isolation from natural fats and oils involves hydrolysis, separation of the fatty acids, hydrogenation to convert unsaturated fatty acids to saturated acids, and finally distillation of the specific fatty acid of interest.

Definition

A white crystalline carboxylic acid, used as a plasticizer and for making detergents and soaps. Its glycerides occur naturally in coconut and palm oils.

Aroma threshold values

Aroma characteristics at 1.0%: fatty, creamy, cheeselike, candle waxy with egglike richness

Taste threshold values

Taste characteristics at 5 ppm: waxy,fatty and oily, tallowlike, creamy and dairylike with a coating mouthfeel

Synthesis Reference(s)

Tetrahedron Letters, 32, p. 5931, 1991 DOI: 10.1016/S0040-4039(00)79429-9

General Description

White solid with a slight odor of bay oil.

Air & Water Reactions

Insoluble in water.

Reactivity Profile

Lauric acid is a carboxylic acid. Carboxylic acids donate hydrogen ions if a base is present to accept them. They react in this way with all bases, both organic (for example, the amines) and inorganic. Their reactions with bases, called "neutralizations", are accompanied by the evolution of substantial amounts of heat. Neutralization between an acid and a base produces water plus a salt. Carboxylic acids in aqueous solution and liquid or molten carboxylic acids can react with active metals to form gaseous hydrogen and a metal salt. Such reactions occur in principle for solid carboxylic acids as well, but are slow if the solid acid remains dry. Even "insoluble" carboxylic acids may absorb enough water from the air and dissolve sufficiently in Lauric acid to corrode or dissolve iron, steel, and aluminum parts and containers. Carboxylic acids, like other acids, react with cyanide salts to generate gaseous hydrogen cyanide. The reaction is slower for dry, solid carboxylic acids. Insoluble carboxylic acids react with solutions of cyanides to cause the release of gaseous hydrogen cyanide. Flammable and/or toxic gases and heat are generated by the reaction of carboxylic acids with diazo compounds, dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides. Carboxylic acids, especially in aqueous solution, also react with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), to generate flammable and/or toxic gases and heat. Their reaction with carbonates and bicarbonates generates a harmless gas (carbon dioxide) but still heat. Like other organic compounds, carboxylic acids can be oxidized by strong oxidizing agents and reduced by strong reducing agents. These reactions generate heat. A wide variety of products is possible. Like other acids, carboxylic acids may initiate polymerization reactions; like other acids, they often catalyze (increase the rate of) chemical reactions. Lauric acid can react with oxidizing materials.

Health Hazard

May be harmful by inhalation, ingestion or skin absorption. Vapor or mist is irritating to eyes, mucous membrane and upper respiratory tract. Causes eye and skin irritation.

Fire Hazard

Behavior in Fire: May cause dust explosion.

Pharmaceutical Applications

pharmaceutical applications it has also been examined for use as an enhancer for topical penetration and transdermal absorption, rectal absorption, buccal delivery,(14) and intestinal absorption. It is also useful for stabilizing oil-in-water emulsions. Lauric acid has also been evaluated for use in aerosol formulations.

Biochem/physiol Actions

Substrate for CYP 4A11

Safety

Lauric acid is widely used in cosmetic preparations, in the manufacture of food-grade additives, and in pharmaceutical formulations. General exposure to lauric acid occurs through the consumption of food and through dermal contact with cosmetics, soaps, and detergent products. Lauric acid is toxic when administered intravenously.
Occupational exposure may cause local irritation of eyes, nose, throat, and respiratory tract, although lauric acid is considered safe and nonirritating for use in cosmetics. No toxicological effects were observed when lauric acid was administered to rats at 35% of the diet for 2 years. Acute exposure tests in rabbits indicate mild irritation. After subcutaneous injection into mice, lauric acid was shown to be noncarcinogenic.
LD50 (mouse, IV): 0.13 g/kg
LD50 (rat, oral): 12 g/kg

Synthesis

Produced from synthetic lauryl alcohol

in vitro

previous study showed that lauric acid could induce apoptosis in both caco-2 and iec-6 cells when compared to butyrate. moreover, lauric acid reduced gsh availability and generated ros in caco-2 cells. mechanistic study indicated that lauric acid reduced caco-2 and iec-6 cells in g0/g1and arrested cells in the s and g2/m phases. in addition, it was found that butyrate protected iec-6 cells from ros-induced damage, while lauric acid induced higher levels of ros when compared with butyrate [1].

in vivo

mouse in vivo study found that both epicutaneous application and intradermal injection of lauric acid could decrease the number of p. acnes colonized in mouse ears effectively, thus relieving p. acnes-induced granulomatous inflammation and ear swelling [2].

Carcinogenicity

Lauric acid was not carcinogenic in the BALB/c:CFW mouse after repeated subcutaneous injections. Lauric acid applied twice weekly for 20 weeks did not promote tumors in mice initiated with 9,10- dimethyl-1,2-benzanthracene. After more extended application (daily, 6 days/week, for 31 weeks), lauric acid caused an increase in skin papillomas, but no histologically malignant tumors were found. Lauric acid was not carcinogenic in rats after exposure in the diet to 35% lauric acid for 2 years.

storage

Lauric acid is stable at normal temperatures and should be stored in a cool, dry place. Avoid sources of ignition and contact with incompatible materials.

Purification Methods

Distil the acid in a vacuum. Also crystallise it from absolute EtOH, or from acetone at -25o. Alternatively, purify it via its methyl ester (b 140.0o/15mm), as described for capric acid. It has also been purified by zone melting. [cf Beilstein 1 III 2913.]

Incompatibilities

Lauric acid is incompatible with strong bases, reducing agents, and oxidizing agents.

Regulatory Status

GRAS listed. Lauric acid is listed as a food additive in the EAFUS list compiled by the FDA. Reported in the EPA TSCA Inventory.

References

[1] fauser jk,matthews gm,cummins ag,howarth gs. induction of apoptosis by the medium-chain length fatty acid lauric acid in colon cancer cells due to induction of oxidative stress. chemotherapy.2013;59(3):214-24.
[2] nakatsuji t,kao mc,fang jy,zouboulis cc,zhang l,gallo rl,huang cm. antimicrobial property of lauric acid against propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. j invest dermatol.2009 oct;129(10):2480-8.
[3] kate l. feltrin et al. acute oral administration of lauric acid reduces energy intake in healthy males. e-spen journal. 2014 april; 9 (2): e69–e75

Lauric acidSupplier

Jinan Wald Chemical Co., Ltd. Gold
Tel
0531-88773586 13210588999
Email
304264064@qq.com
Products Intro
CAS:143-07-7
Purity:99 Package:1kg/
Nantong Zhonghe Chemical New Materials Co., Ltd Gold
Tel
13003551299 13003551299
Email
2369399482@qq.com
Products Intro
Product Name:Lauric acid
CAS:143-07-7
Purity:99% Package:25KG
Shanghai shengyue international trading co., ltd Gold
Tel
021-66690837 13166269258
Email
2570384992@qq.com
Products Intro
Product Name:Lauric acid
CAS:143-07-7
Purity:99%
Sigma-Aldrich Gold
Tel
021-61415566 800-8193336
Email
orderCN@merckgroup.com
Products Intro
Product Name:Dodecanoic acid
CAS:143-07-7
Purity:>=99% (GC/titration) Package:100G Remarks:L4250-100G
J & K SCIENTIFIC LTD.
Tel
010-82848833 400-666-7788
Email
jkinfo@jkchemical.com
Products Intro
Product Name:Dodecanoic acid, 98%
CAS:143-07-7
Purity:98% Package:100G;500G