Basic information Anti-Vomiting drug during chemotherapy Dose and usage Side effects Uses Safety Supplier Related
ChemicalBook >  Product Catalog >  API >  Digestive system drugs >  Emetics and antiemetics >  Aprepitant

Aprepitant

Basic information Anti-Vomiting drug during chemotherapy Dose and usage Side effects Uses Safety Supplier Related

Aprepitant Basic information

Product Name:
Aprepitant
Synonyms:
  • CS-274
  • Aprepitant (MK-0869, L-754030)
  • 5-[[(2R,3S)-2-[(1R)-1-[3,5-Bis(trifluoromethyl)phenyl]ethoxy]-3-(4-fluorophenyl)-4-morpholinyl]methyl]-1,2-dihydro-3H-1,2,4-triazol-3-one
  • Emend
  • MK-0869
  • 5-[[(2R,3S)-2-[(1R)-1-[3,5-Bis(trifluoromethyl)phenyl]ethoxy]-3-(4-fluorophenyl)-4-morpholinyl]methyl]-1,2-dihydro-3H-1,
  • 5-[[(2R,3S)-2-[(1R)-1-[3,5-Bis(trifluoromethyl)phenyl]ethoxy]-3-(4-fluorophenyl)-4-morpholinyl]methyl]-1,2-dihydro-3H-1,2,4-triazol-3-one, Emend
  • Aprepitant(MK-0869)
CAS:
170729-80-3
MF:
C23H21F7N4O3
MW:
534.43
EINECS:
677-636-6
Product Categories:
  • Inhibitors
  • Aprepitant
  • Chiral Reagents
  • Heterocycles
  • Intermediates & Fine Chemicals
  • Pharmaceutical intermediate
  • Pharmaceuticals
  • API
  • 170729-80-3
Mol File:
170729-80-3.mol
More
Less

Aprepitant Chemical Properties

Melting point:
244-246°C
alpha 
D25 +69° (c = 1.00 in methanol)
Density 
1.51±0.1 g/cm3(Predicted)
storage temp. 
Sealed in dry,2-8°C
solubility 
Soluble in DMSO (>25 mg/ml)
pka
8.06±0.20(Predicted)
form 
powder
color 
white to beige
optical activity
[α]/D +61 to +71°, c = 1.0 in methanol
Stability:
Stable for 2 years from date of purchase as supplied. Solutions in DMSO may be stored at -20°C for up to 3 months.
InChIKey
ATALOFNDEOCMKK-OITMNORJSA-N
SMILES
N1C(CN2CCO[C@H](O[C@@H](C3=CC(C(F)(F)F)=CC(C(F)(F)F)=C3)C)[C@@H]2C2=CC=C(F)C=C2)=NC(=O)N1
CAS DataBase Reference
170729-80-3(CAS DataBase Reference)
More
Less

Safety Information

HS Code 
2934990002
More
Less

Aprepitant Usage And Synthesis

Anti-Vomiting drug during chemotherapy

Aprepitant is a neurokinin-1 (NK-1) receptor antagonist and belongs to the treating agents of vomiting during chemotherapy of cancer. It was first successfully developed by Merck Company (German). In March 2003, the US Food and Drug Administration approved it for being used in the treatment of chemotherapy vomiting. This product has a high selective affinity to human beings while has a low affinity to serotonin, dopamine and glucocorticoid receptor affinity. Aprepitant, when combined with 5-HT3 receptor inhibitors (such as ondansetron hydrochloride) and the corticosteroid dexamethasone, can further alleviate the cisplatin-induced acute and (or) delayed emesis. Applying this drug alone can have some preventive effect.
Substance P, a kind of tachykinin (neurokinin), is mainly distributed in the neurons of central and peripheral nervous system. It is related with a lot of features such as vomiting, depression, inflammatory pain and other inflammatory diseases. The role of substance P is mediated by NK-1 receptor which is a kind of G protein receptor coupled with phosphoinositide signaling pathway. The drug has blocking effect on the NK-1 receptor through direct binding to this receptor, thus further obtaining the treatment of substance P-mediated diseases.
Aprepitant can selectively prevent the binding of substance P with NK-1 receptor in the central nervous system to take antiemetic effect. Therefore, it can be used for treating the nausea and vomiting caused by the moderately and highly emetogenic chemotherapy.

Dose and usage

When being used for treating the chemotherapy-induced nausea and vomiting, aprepitant is often used in combination with ondansetron (only at the first day of administration) and dexamethasone. Detailed as follows:
At 30 min before chemotherapy, intravenously inject 32 mg of ondansetron, taking 12 mg of dexamethasone; at the morning of 2~4d, take 8 mg of dexamethasone again.
For nausea and vomiting induced by chemotherapy, use a initial dose of 125mg at the first day, administer at 1 hour before chemotherapy; the first 2~3d, daily 80mg; administer at 1 h before chemotherapy; for treating severe depression (with anxiety) administer 300mg each time, qd. However, the efficacy is still not clear. The above instruction doesn’t need dose adjustment for different gender or races. For patients of renal insufficiency, there is no need for dose adjustment; for mild to moderate liver dysfunction, there is no need to adjust the dose as well; we are currently still lack of pharmacokinetic data when severe liver damage happens. It is also not necessary for the elderly to adjust the dose. There is also no need for dose adjustment to patients who are undergoing hemodialysis due to advanced renal disease.
The above information is edited by the chemicalbook of Dai Xiongfeng.

Side effects

Gastrointestinal reaction: when used for the prevention of chemotherapy-induced emesis, aprepitant may cause diarrhea, but clear relationship is still lacking.
Central nervous system: the drug can cause drowsiness and weakness (or lack thereof), but statistical significance was not obvious.
Genitourinary system: when aprepitant is applied for the treatment of severe depression, sexual dysfunction can occur.
Respiratory system: the drug is used for the prevention of chemotherapy-induced emesis, can also cause hiccups. But the clinical significance is not clear.
Skin: occasionally History-Johnson syndrome, urticaria and angioedema can occur.
Liver: when aprepitant is used for the prevention of chemotherapy-induced emesis, it can cause the increase of serum aminotransferase, but the clinical significance is unclear. No cases of liver toxicity had been reported.

Uses

Antineoplastic drug.

Description

Aprepitant is an antiemetic chemical compound that belongs to “substance P” antagonists (SPA) with its effect being blocking the neurokinin 1(Nk1) receptor. It is used for the prevention of acute and delayedchemotherapy-induced nausea and vomiting(CINV) and for prevention ofpostoperative nausea and vomiting. It can also be used for the treatment of cyclic vomiting syndrome and late-stage chemotherapy induced vomiting occurring during cancer treatment. Aprepitant alleviates the case of vomiting in patients through balking the signals released by Nk1 receptors. Nk1 is a G-protein-coupled receptor with its ligand being substance P (SP). The high concentration of SP is required for the vomiting reflex. Aprepitant blocks the process of SP-NK1 signaling in activating the vomiting reflex.

Chemical Properties

Off-White to Light Yellow Cyrstalline Solid

Originator

Merck (US)

Uses

A novel selective neurokinin-1 (NK-1) receptor antagonist. In vitro studies using human liver microsomes indicate that Aprepitant is metabolised primarily by CYP3A4 with minor metabolism by CYP1A2 and CYP2C19, and no metabolism by CYP2D6, CYP2C9, or CYP2E1. Antiemetic.

Uses

anticholinergic

Definition

ChEBI: A morpholine-based antiemetic, which is or the prevention of acute and delayed nausea and vomiting associated with initial and repeat courses of highly emetogenic cancer chemotherapy. Aprepitant is a selective high-affinity antagonist of human substance P/ eurokinin 1 (NK1) receptors.

brand name

Emend (Merck).

Clinical Use

Aprepitant, a substance P (neurokinin-1 [NK-1]) receptor antagonist used for the treatment of chemotherapy-induced nausea and vomiting, was launched in the US and was later approved in the European Union. It is a non-peptide analog having a trisubstituted morpholine with three chiral centers. Two syntheses have been described. In six steps p-fluorophenylacetic acid is converted to 4-benzyl-3-pfluorophenyl- 2-oxomorpholine with a resolution step setting the S-stereochemistry. This intermediate is converted in six steps to aprepitant, with two of the steps utilizing a chiral induction strategy to set the new centers based upon the chiral 2- oxomorpholine intermediate. SAR efforts leading to aprepitant included engineering in potency for NK-1, decreasing affinity for L-type calcium ion channels, most importantly by decreasing the basicity of the core heterocycle. In vitro, it binds with very high affinity (90 pM) to the hNK1 in transfected CHO cells. It is described as an inverse agonist of hNK-1 receptor, with slow dissociation rate under some conditions. In ferrets dosed orally or intravenously prior to emetogen challenge (cisplatin, apomorphine or morphine), retching and vomiting was reduced. Its antiemetic effect is enhanced with the dosing of dexamethasone and it is effective against both the acute and delayed phase of cisplatin-induced emesis. Cisplatin-induced emesis clinical studies showed that aprepitant (125 mg p.o.) in combination with ondansetron (32 mg i.v.) and dexamethasone (20 mg p.o.) therapeutically followed by repeat dosing (days 2–5) of aprepitant (80 mg) dexamethasone (20 mg) provided acute (8 h) and delayed phase (days 2–7) no vomiting rates of 83 and 70%, respectively. L-758298, a prodrug of aprepitant, was not as effective as ondansetron (32 mg i.v.) in reducing acute phase vomiting, but was superior in reducing vomiting in the delayed phase. The terminal half-life range of aprepitant is 9–13 h and the bioavailability is about 65%. It is highly protein bound (95%) and has a Vdss of 70 L. It is a moderate CYP3A4 inhibitor, thus several drugs cleared by CYP3A4 should not be used concurrently. It is also an inducer of CYP2C9 thus potentially modulating the PK of drugs cleared by CYP2C9. Most side effects were mild to moderate, with fatigue, asthenia, diarrhea, and hiccups.

Synthesis

Several variations to the synthesis of aprepitant (II) have been published by the Merck group. The latest optimized synthesis utilizing a novel crystallization-induced diastereoselective synthesis of aprepitant is highlighted in the Scheme. The synthetic approach entailed (1) the synthesis and coupling of the key pieces, N-benzyl lactam lactol 13 and sec-phenethyl alcohol 7, to provide lactam acetal 14, (2) stereoselective elaboration to the key intermediate 14, and (3) conversion to the final compound via either intramolecular cyclization or intermolecular coupling with triazolinone chloride 24. The intermediate secphenethyl alcohol 7 was synthesized in 97% yield and 95% e.e. (improved to 99% e.e. after recrystallization) via the enantioselective borane reduction of ketone 6 in the presence of 2 mol % of (S)-oxazaborolidine catalyst 8. The optimized conditions involved the slow addition of ketone 6 to a solution containing catalyst 8 and BH3?¤PhNEt2 complex in MTBE at ¨C10 to 0??C. The synthesis of lactam 12 was done by reacting N-benzylethanolamine (9) with slight excess of aqueous glyoxylic acid (10, 2.3 equivalent of 50% aqueous solution) in refluxing THF. Adjustment of the solvent composition from predominantly THF to predominantly water resulted in the crystallization of lactam 12 directly from 11 in the reaction mixture in 76% yield. Lactam 12 was treated with trifluoroacetic anhydride (1 equiv) to give trifluoroacetate 13, which was reacted in situ with chiral alcohol 7 in the presence of BF3?¤OEt2 to give, after workup, a 55:45 mixture of the acetals 14 and 15 in 95-98% overall yield. To obtain the desired diastereomer from the 55:45 mixture of 14 and 15, an optimized crystallization sequence was developed. To a solution of the crude mixture in heptane, 3,7-dimethyl-3-octanol (17) (0.9 equiv) was added, cooled to ¨C10 to ¨C5??C and, after seeding the mixture with pure 14, potassium salt of 3,7-dimethyl-3-octanol (16) (0.3 equiv) was added to initiate the crystallization-induced epimerization of 15 to 14. After 5 hr, the mixture was transformed into a 96:4 mixture from which 14 was isolated in 83-85% yield and £?99% e.e. Under an optimized condition, the lactam 1 4 was reacted with 4- fluorophenylmagnesium bromide (18) (1.3 equiv) in THF at ambient temperature followed by methanol quench and addition of p-toluenesulfonic acid (1.8-2.2 equiv). Immediate hydrogenation of this mixture in the presence of 5% Pd/C gave the addition product 19, which was isolated as hydrochloride salt in 91% yield. Under these conditions, no cleavage of the benzylic ether group was seen, even after extended hydrogenation periods. Elaboration to aprepitant (II) was done by the initial alkylation of 19 in the presence of a base with amidrazone chloride 20, which was prepared from chloroacetonitrile, to give the intermediate 21. Thermolysis of 21 in toluene provided aprepitant (II) in 85% overall yield. Alternatively, the hydrochloride salt 19 has also been alkylated directly with the triazolinone chloride 24 to give aprepitant (II).

Drug interactions

Potentially hazardous interactions with other drugs
Antidepressants: avoid with St John’s wort.
Antipsychotics: avoid with pimozide.
Avanafil: possibly increases avanafil concentration.
Cytotoxics: possibly increases bosutinib concentration - avoid or reduce bosutinib dose; possibly increases ibrutinib concentration - reduce ibrutinib dose.
Oestrogens and progestogens: may cause contraceptive failure.
Ulipristal: possibly reduces contraceptive effect - avoid.

Metabolism

Aprepitant undergoes extensive metabolism. Following a single IV 100mg dose of [14C]fosaprepitant, a prodrug for aprepitant, aprepitant accounts for approximately 19% of the radioactivity in plasma over 72 hours. 12 metabolites of aprepitant have been identified in human plasma. The metabolism of aprepitant, primarily by CYP3A4 and potentially with minor contribution by CYP1A2 and CYP2C19, occurs largely via oxidation at the morpholine ring and its side chains and the resultant metabolites were only weakly active.
Aprepitant is not excreted unchanged in urine. Metabolites are excreted in urine (57%) and via biliary excretion in faeces (45%).

storage

Store at -20°C

References

Curran, Monique P., and D. M. Robinson. "Aprepitant."Drugs69.13(2009):1853-1878.
Sant P. Chawla M.D. † ‡, et al. "Establishing the dose of the oral NK 1, antagonist aprepitant for the prevention of chemotherapy-induced nausea and vomiting." Cancer 97.9(2003):2290-2300.
Warr, D. G., et al. "Efficacy and tolerability of aprepitant for the prevention of chemotherapy-induced nausea and vomiting in patients with breast cancer after moderately emetogenic chemotherapy." Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology23.12(2005):2822-30.
https://en.wikipedia.org/wiki/Aprepitant

AprepitantSupplier

Enantiotech Corporation Ltd Gold
Tel
760-85282375 13212762451
Email
marketing@enantiotech.net
Hubei Chenxin Pharmaceutical Co., Ltd. Gold
Tel
17362916295 17362916295
Email
w17362916295@163.com
Zhejiang Warrant Pharmaceutical Co.,Ltd. Gold
Tel
0512-85180611 17312581805
Email
felix@lanxite.com
Shanghai Boyle Chemical Co., Ltd.
Tel
Email
sales@boylechem.com
J & K SCIENTIFIC LTD.
Tel
010-82848833 400-666-7788
Email
jkinfo@jkchemical.com