Structure Gene, mRNA, and precursor Receptors Agonists and Antagonists Clinical implications Synthesis and release
ChemicalBook > CAS DataBase List > HLH

HLH

Structure Gene, mRNA, and precursor Receptors Agonists and Antagonists Clinical implications Synthesis and release
Product Name
HLH
CAS No.
39341-83-8
Chemical Name
HLH
Synonyms
LH;PLH;HLH;ICSH;OVINE LH;HLH USP/EP/BP;LH, HUMAN PITUITARY;LUTEINIZING HORMONE;OVINE LUTEINIZING HORMONE;LUTEINIZING HORMONE, HUMAN
CBNumber
CB1136926
Molecular Formula
NULL
Formula Weight
0
MOL File
Mol file
More
Less

HLH Property

storage temp. 
2-8°C
form 
lyophilized powder
color 
White to off-white
More
Less

Safety

Hazard Codes 
T,B
Risk Statements 
60
Safety Statements 
53-22-36/37/39-45
WGK Germany 
3
RTECS 
OK6367000
More
Less

Hazard and Precautionary Statements (GHS)

More
Less

N-Bromosuccinimide Price

Sigma-Aldrich
Product number
L6420
Product name
Luteinizing Hormone from human pituitary
Purity
≥8,500?IU/mg
Packaging
10μg
Price
$253
Updated
2024/03/01
Sigma-Aldrich
Product number
L6420
Product name
Luteinizing Hormone from human pituitary
Purity
≥8,500?IU/mg
Packaging
50μg
Price
$996
Updated
2024/03/01
Sigma-Aldrich
Product number
869003-M
Product name
Luteinizing Hormone, Human Pituitary, Iodination Grade
Packaging
10μg
Price
$161
Updated
2024/03/01
Sigma-Aldrich
Product number
869003-M
Product name
Luteinizing Hormone, Human Pituitary, Iodination Grade
Packaging
50μg
Price
$588
Updated
2024/03/01
Sigma-Aldrich
Product number
869003-M
Product name
Luteinizing Hormone, Human Pituitary, Iodination Grade
Packaging
869003-10UG
Price
$154
Updated
2023/06/20
More
Less

HLH Chemical Properties,Usage,Production

Structure

LH is a glycoprotein consisting of noncovalently linked glycoprotein hormone (GPH) α- and LH β-subunits. The GPH α-subunit is common to folliclestimulating hormone (FSH), thyroid-stimulating hormone (TSH), and chorionic gonadotropin (CG). The LH β-subunit contains a cysteine-knot motif, which is critical for the heterodimer assembly and biological activity of the hormone. The N-linked oligosaccharide chain is important for the intracellular folding, secretion, metabolic clearance, and biological activity of the hormone. Mr 26,000–48,000. pI: human LH, 7.2–9.2; rat LH, 8.6–9.3; pig LH, 7.2–9.2; horse LH, 4.5–7.5. Multiple isoforms exist due to the microheterogeneity of oligosaccharide chains. Soluble in water; insoluble in alcohol and acetone. Partially (50%) dissociated to two subunits at pH 1.9. Inactivated by oxidation (hydrogen peroxide, periodic acid), reduction (cysteine, ketone), and treatment with trypsin, chymotrypsin, and pepsin. Picrolonic, flavianic, picric, and trichloroacetic acids precipitate LH with retention of its activity.

Gene, mRNA, and precursor

The human LH β-subunit gene, LHB, location 2p21, consists of three exons. The human LH β-subunit mRNA has 523 b that encode a signal peptide of 20 aa residues and a mature protein of 121 aa residues. The LH β-subunit gene is expressed in the basophilic gonadotropes in the anterior pituitary. In tetrapods, FSH and LH are coexpressed in gonadotropes, whereas they are produced in different cells in teleosts.

Receptors

The receptor of LH (LHR) is a glycoprotein that belongs to a subclass of the rhodopsin/β-adrenergic subfamily of the membrane-bound GPCR superfamily. The LHR consists of around 700 aa residues and contains a large N-terminal extracellular domain (~360 aa residues), seven transmembrane domains, and a C-terminal intracellular domain.  The receptor mainly couples to the Gs protein, and LH stimulates the production of cAMP in target cells.

Agonists and Antagonists

hCG, and purified and recombinant human LH, are agonists. Deglycosylated hCG and deglycosylated LH are antagonists.

Clinical implications

A single mutation (Gly 578 Asp) in the sixth transmembrane domain of LHR resulting in the constitutive activation of the LHR causes familial male precocious puberty.16 A missense mutation (Ala 593 Pro) in the sixth transmembrane domain of LHR causes Leydig cell hypoplasia. Conditions with high LH levels include premature menopause, gonadal dysgenesis, Turner syndrome, castration, Swyer syndrome, polycystic ovary syndrome, certain forms of congenital adrenal hyperplasia, testicular failure, and pregnancy. Conditions with low FSH levels include Kallmann syndrome, hypothalamic suppression, hypopituitarism, eating disorders, female athlete triad, hyperprolactinemia, and hypogonadism.

Synthesis and release

The synthesis and release of LH are regulated by GnRH, gonadotropin-inhibitory hormone (GnIH), gonadal steroids, and dopamine. In tetrapods, GnRH acts directly on gonadotropes and differentially regulates LH and FSH secretion through changes in the pattern of GnRH pulsatile secretion. GnIH inhibits LH secretion in birds and mammals, whereas GnIH can stimulate and inhibit LH secretion in fish depending on the species and reproductive status. LH secretion is regulated by gonadal steroids such as estradiol and testosterone. Gonadal steroids exert their effects at the level of the hypothalamus by changing GnRH secretion, and directly at the level of the gonadotropes, where they exert different effects depending on the species and reproductive condition of animals. In teleosts, dopamine inhibits both basal and GnRH-stimulated LH secretion.

Description

This is a gonadotropic glycoprotein hormone secreted from the anterior pituitary. In females, an LH surge triggers ovulation and stimulates the development of the corpus luteum. In males, LH stimulates androgen production and spermatogenesis. Gonadotropic fractions with the properties of LH were purified from the ovine in the late 1950s, and subsequently LH has been isolated from many other species. Human LH was first fully purified in 1964. The aa sequence of the ovine LH β-subunit was determined in 1972. The full nucleotide sequence of the human LH β-subunit gene was determined in 1984.

Uses

A surge of LH is tested to predict ovulation using urinary ovulation predictor kits. Recombinant human LH is used for the treatment of female infertility. Menotropins (human menopausal gonadotropin, hMG), a mixture of FSH and LH, are used to treat infertility in women. hCG derived from the urine of pregnant women is used as an LH substitute.

General Description

LH is another glycoprotein. It acts after the maturing actionof FSH on ovarian follicles, stimulates production of estrogens,and transforms the follicles into corpora lutea. LHalso acts in the male to stimulate the Leydig cells that producetestosterone.

HLH Preparation Products And Raw materials

Raw materials

Preparation Products

More
Less

HLH Suppliers

3B Pharmachem (Wuhan) International Co.,Ltd.
Tel
821-50328103-801 18930552037
Fax
86-21-50328109
Email
3bsc@sina.com
Country
China
ProdList
15839
Advantage
69
Beijing OKA biological technology co., LTD
Tel
010-010-010-62971590 18548936886
Fax
010-62340519
Email
jack@oka-vip.com
Country
China
ProdList
6897
Advantage
58
Dideu Industries Group Limited
Tel
+86-29-89586680 +86-15129568250
Email
1026@dideu.com
Country
China
ProdList
22784
Advantage
58
Beijing Jin Ming Biotechnology Co., Ltd.
Tel
010-60605840 15801484223;
Email
psaitong@jm-bio.com
Country
China
ProdList
29774
Advantage
58
PhyCell Medical research Ltd
Tel
138-18883417 13818883417
Email
1281600188@qq.com
Country
China
ProdList
230
Advantage
58
Shandong Dexiang International Trade Co., Ltd
Tel
+86-15662691337 +86-15662695772
Email
539942812@qq.com
Country
China
ProdList
998
Advantage
58

39341-83-8, HLHRelated Search:


  • Luteinizing Hormone from human pituitary,ICSH, LH, PLH
  • LUTEINIZING HORMONE
  • LUTEINIZING HORMONE, HUMAN
  • LUTEINIZING HORMONE, HUMAN PITUITARY
  • LH
  • LH, HUMAN PITUITARY
  • ICSH
  • HLH
  • PLH
  • OVINE LH
  • OVINE LUTEINIZING HORMONE
  • LUTEINIZING HORMONE FROM HUMAN*PITUITARI ES
  • luteinizing hormone from human pituitary
  • HLH USP/EP/BP
  • 39341-83-8
  • Cytokines, Growth Factors and Hormones
  • Pituitary Hormones
  • Hormones
  • Luteinizing Hormone (LH)
  • BioChemical
  • Cell Signaling and Neuroscience
  • Cell Biology