Description References
ChemicalBook > CAS DataBase List > ASPARAGINASE

ASPARAGINASE

Description References
Product Name
ASPARAGINASE
CAS No.
9015-68-3
Chemical Name
ASPARAGINASE
Synonyms
CL059;LASPAR;elspar;mk-965;leunase;paronal;l-asnase;crasnitin;colaspase;kidrolase
CBNumber
CB2484567
Molecular Formula
C14H17NO4S
Formula Weight
295.35
MOL File
Mol file
More
Less

ASPARAGINASE Property

alpha 
D20 -30 to -32°
storage temp. 
2-8°C
form 
suspension
color 
Crystals or powder
Merck 
13,841
CAS DataBase Reference
9015-68-3
EPA Substance Registry System
Asparaginase (9015-68-3)
More
Less

Safety

Hazard Codes 
T,Xn
Risk Statements 
61-42/43-63
Safety Statements 
53-22-36/37/39-45-36/37
RIDADR 
3249
WGK Germany 
3
RTECS 
CI9000000
10-21
HazardClass 
6.1(a)
PackingGroup 
II
HS Code 
3507909090
Hazardous Substances Data
9015-68-3(Hazardous Substances Data)
Toxicity
TDLo ims-chd: 8145 iu/kg/1W:SYS CANCAR 34,780,74
More
Less

Hazard and Precautionary Statements (GHS)

Symbol(GHS)
Signal word
Warning
Hazard statements

H317May cause an allergic skin reaction

H361Suspected of damaging fertility or the unborn child

Precautionary statements

P201Obtain special instructions before use.

P280Wear protective gloves/protective clothing/eye protection/face protection.

P302+P352IF ON SKIN: wash with plenty of soap and water.

P308+P313IF exposed or concerned: Get medical advice/attention.

More
Less

N-Bromosuccinimide Price

Sigma-Aldrich
Product number
A3809
Product name
Asparaginase from Escherichia coli
Purity
lyophilized powder, 100-300?units/mg protein (biuret)
Packaging
100units
Price
$315
Updated
2024/03/01
Sigma-Aldrich
Product number
A3809
Product name
Asparaginase from Escherichia coli
Purity
lyophilized powder, 100-300?units/mg protein (biuret)
Packaging
1000units
Price
$1530
Updated
2024/03/01
Usbiological
Product number
A3800
Product name
L-Asparaginase
Packaging
500u
Price
$297
Updated
2021/12/16
Usbiological
Product number
209056
Product name
L-Asparaginase
Packaging
500IU
Price
$489
Updated
2021/12/16
American Custom Chemicals Corporation
Product number
ENZ0001490
Product name
L-ASPARAGINASE
Purity
95.00%
Packaging
5MG
Price
$501.18
Updated
2021/12/16
More
Less

ASPARAGINASE Chemical Properties,Usage,Production

Description

Asparaginase is a kind of enzyme that can be used as a medication and in food industry. It is mainly extracted from E. coli. In the medical field, it can be used for the treatment of acute lymphoblastic leukemia, acute myeloid leukemia, and non-Hodgkin’s lymphoma. This is due to that asparaginase can convert the L-asparagine into aspartate and ammonia, exhausting the available asparagine needed for leukemic cells and thus leading to cell death. In the food industry, it can be used as a processing aid in the manufacture of food to reduce the formation of acrylamide, which is a potential carcinogen through removing the asparagine which can undergo Maillard reaction during cooking to induce tumor in fried and baked food.

References

https://en.wikipedia.org/wiki/Asparaginase

Description

Using the enzyme asparaginase (L-asparagine amidohydrolase, EC 3.5.1.1), it is possible to significantly reduce the formation of the cooking carcinogen acrylamide during roasting, deep-frying, or baking of foods. The enzyme hydrolyzes free asparagine to aspartic acid, thereby preventing the formation of acrylamide by reaction of asparagine with reducing sugars at elevated temperatures during the Maillard reaction.
The mitigation of acrylamide formation is especially important for a number of cereal- and potato-based products, including crackers, crispbread, gingerbread, biscuits, French fries, and potato chips. After asparaginase pretreatment, the acrylamide concentration of certain foods could be reduced by up to 97 % [84, 86]. By means of in vitro directed evolution, the properties of asparaginase were optimized. For example, an Asp133Leu mutation of a wild-type enzyme showed a significantly improved thermal stability. The enzyme’s half-life at 50 C increased from 3 to 160 h, and the half-inactivation temperature of the mutant was 9 C higher.

Originator

Enzon (U.S.A.)

Uses

Antineoplastic.

Uses

Asparaginase from Escherichia coli has been used:

  • to compare the cytotoxic effect of L-asparaginase purified from?Streptomyces brollosae?NEAE-115
  • as a standard in asparaginase assay to quantify asparaginase activities in various eel tissues
  • to elicit amino acid deprivation

Indications

The enzyme L-asparaginase (Elspar) is derived from the bacteria Escherichia coli and Erwinia carotovora. It catalyzes the hydrolysis of L-asparagine to aspartic acid and ammonia. L-Glutamine also can undergo hydrolysis by this enzyme, and during therapy, the plasma levels of both amino acid substrates fall to zero.Tumor cells sensitive to L-asparaginase are deficient in the enzyme asparagine synthetase and therefore cannot synthesize asparagine. Depletion of exogenous asparagine and glutamine inhibits protein synthesis in cells lacking asparagine synthetase, which leads to inhibition of nucleic acid synthesis and cell death.

Definition

An enzyme used in the treatment of certain types of leukemia. Produced by biochemical activity of certain bacteria, yeasts, and fungi. Yields are in excess of 3500 units/g of source.

Manufacturing Process

Therapeutically active L-asparaginase is isolated from bacteria from the genus Erwinia, a known genus pathogenic towards plants. L-asparaginase is conveniently isolated from this genus by growing the bacteria upon a suitable nutrient medium until a desired quantity is obtained and then extracting the L-asparaginase either by conventional cell disruption methods, or preferably, by processes more fully described in US Patent 3,660,238.

brand name

Crasnitin (Bayer); Elspar (Merck);Oncaspar.

Therapeutic Function

Antineoplastic (acute leukemia)

General Description

Asparaginase is available in 10-mL vials for intramuscularand IV use in the treatment of acute lymphocytic leukemia.
Tumor cells are unable to synthesize asparagine, and thereforemust utilize what is available in the extracellular environment.The agent acts by hydrolyzing extracellular asparagineto aspartate and ammonia. The tumor cells are then deprivedof a necessary nutrient, and protein synthesis is inhibited leadingto cell death. The agent is specific for the G1 phase of thecell cycle. Resistance occurs because of the development ofthe tumor cells ability to produce asparagine synthetase thatallows them to synthesize the required amino acid. Antibodyproduction directed at asparaginase may be stimulated by theagent as well. The agent remains in the extracellular spaceafter parental administration and is 30% protein bound. Themetabolism of the agent has not been well characterized andthe plasma half-life depends on the formulation of the drug.The E. coli-derived agent has a plasma half-life of 40 to 50hours, whereas polyethylene glycol-asparaginase’s half-life is3 to 5 days. Adverse effects include hypersensitivity reactions,fever, chills, nausea, lethargy, confusion, hallucinations,and possibly coma. Myelosuppression is not generallyseen. An increased risk of bleeding and clotting is seen in halfof the patients taking the agent.

Biochem/physiol Actions

Asparaginase (ASNase) products are usually obtained from?Escherichia coli?and?Erwinia chrysanthemi. These enzymes can block the synthesis of protein in tumor cells. It shows high activity in the G1?phase of the cell cycle. It is capable of causing pancreatitis in leukemia patients.

Mechanism of action

The half-life of L-asparaginase in human plasma is 6 to 30 hours.The drug remains primarily in the intravascular space, so its volume of distribution is only slightly greater than that of the plasma. Metabolism and disposition are thought to occur through serum proteases, the reticuloendothelial system, and especially in patients with prior exposure to the drug, binding by antibodies. The drug is not excreted in urine, and very little appears in the CSF.

Biotechnological Applications

L-asparaginase (EC. 3.5.1.1; asparagine amidohydrolase) catalyzes the hydrolysis of L-Asparagine to L-aspartic acid and ammonia. This enzyme is used for the treatment of selected types of hemopoietic diseases such as acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphomas (Pieters et al. 2011; Rytting 2012). It is also a model enzyme for the development of new drug delivery system and L-asparagine biosensor for leukemia. This enzyme was used in the food industry for the production of acrylamide free food (Kumar and Verma 2012; Dhanam Jayam and Kannan 2013).
Y. lipolytica is a potential producer of L-asparaginase. However, there are very few reports on L-asparaginase production by the yeast. Karanam and Medicherla optimized L-asparaginase production of Y. lipolytica NCIM 3472 in solid-state fermentation (SSF) using palm kernel cake as the substrate. The maximum L-asparaginase activity at optimum conditions was near 40 U/g of the initial dry substrate (U/gds) (Karanam and Medicherla 2010).

Clinical Use

Pegaspargase, a polyethylene glycol conjugate of L-asparaglnase (ASNase), was launched for combination chemotherapy in acute lymphoblastic leukemia (ALL). L-Asparaginase is an enzyme that inhibits protein synthesis by the depletion of sources of L-asparagine, which is necessary for transformed lymphoid cells to proliferate. It has been used as a standard component of the antileukemia armamentarium for childhood All. Pegaspargase has greater antitumor activity, a longer plasma half-life and less immunogenicity than ASNase. It produces minimal side effects after repeated dosing, whereas ASNase induces anaphylactic shock, urticaria, anorexia or vomiting and acute pancreatitis in dogs, and other immunological effects in man resulting from sensitization to the enzyme or protein synthesis inhibition. The efficacy of pegaspargase for other indications including breast and lung cancers, non-Hodgkin's lymphoma and pancreatic cancer has been reported.

Anticancer Research

Both the commonly known and distinctive species have been reported to produceL-asparaginase. The common species of endophytes, which produce L-asparaginase,include Fusarium sp., Penicillium sp., and Colletotrichum sp. They are isolated asendophytes from a variety of medicinal plants (Audipudi et al. 2014; El-Said et al.2016).
Chow and Ting (2015) studiedL-asparaginase production from fungal endophytes isolated from anticancer plantsin Malaysia. They found Fusarium oxysporum and Penicillium simplicissimumfrom Murraya koenigii and Pereskia bleo, respectively, as effective producers ofL-asparaginase. In addition to L-asparaginase, endophytes from anticancer plantshave also been established as producers of other valuable anticancer, antimicrobial,and antioxidant compounds. This is further supported by many reports on discoveryof these anticancer agents in different species of endophytic fungi either from sameor different host plants.

Clinical Use

The major indication for L-asparaginase is in the treatment of acute lymphoblastic leukemia; complete remission rates of 50 to 60% are possible. Lack of crossresistance and bone marrow toxicity make the enzyme particularly useful in combination chemotherapy. LAsparaginase also can be used in the treatment of certain types of lymphoma. It has no role in the treatment of nonlymphocytic leukemias or other types of cancer.

Side effects

Since it is a foreign protein, L-asparaginase may produce hypersensitivity reactions, including urticarial skin rashes and severe anaphylactic reactions. One-third of patients have nausea, anorexia, weight loss, and mild fever. Almost all patients develop elevated serum transaminases and other biochemical indices of hepatic dysfunction. Severe hepatic toxicity occurs in fewer than 5% of cases. Patients receiving L-asparaginase may develop symptoms of CNS toxicity, including drowsiness, confusion, impaired mentation, and even coma. Pancreatitis occurs in 5 to 10% of cases.Hyperglycemia, possibly due to inhibition of insulin synthesis, also may occur. L-Asparaginase differs from most cytotoxic drugs in its lack of toxicity to bone marrow, gastrointestinal tract, and hair follicles.

Safety Profile

Human (child) systemic effects byintramuscular route. An experimental teratogen. Otherexperimental reproductive effects. Questionablecarcinogen with experimental neoplastigenic data.

Veterinary Drugs and Treatments

Asparaginase has been useful in combination with other agents in the treatment of lymphoid malignancies. The drug is most useful in inducing remission of disease but is occasionally used in maintenance or rescue protocols.
Use of asparaginase as part of an initial treatment lymphosarcoma protocol is now somewhat controversial, as one study (MacDonald, Thamm et al. 2005) in dogs showed no statistical difference for response rates, remission or survival rate, remission or survival duration, or prevalence of toxicity and treatment delay in dogs treated with or without asparaginase as part of a standard CHOP protocol.

ASPARAGINASE Preparation Products And Raw materials

Raw materials

Preparation Products

More
Less

ASPARAGINASE Suppliers

ecochem international chemical broker
Tel
--
Fax
--
Email
export@ecochem.dk
Country
Europe
ProdList
6371
Advantage
66
kemikalieimport
Tel
--
Fax
--
Email
Sales@kemikalieimport.dk
Country
Europe
ProdList
6685
Advantage
47
More
Less

View Lastest Price from ASPARAGINASE manufacturers

Hebei Weibang Biotechnology Co., Ltd
Product
ASPARAGINASE 9015-68-3
Price
US $0.00-0.00/KG
Min. Order
1KG
Purity
99%
Supply Ability
500000kg
Release date
2024-10-25
Hebei Yanxi Chemical Co., Ltd.
Product
ASPARAGINASE 9015-68-3
Price
US $40.00-5.00/kg
Min. Order
1kg
Purity
0.99
Supply Ability
20 tons
Release date
2023-09-21
Zhuozhou Wenxi import and Export Co., Ltd
Product
Asparaginase 9015-68-3
Price
US $15.00-10.00/KG
Min. Order
1KG
Purity
99%+ HPLC
Supply Ability
Monthly supply of 1 ton
Release date
2021-07-10

9015-68-3, ASPARAGINASERelated Search:


  • Asparaginase (usan 8ci 9ci)
  • Asparaginase, L- (escherichia coli)
  • Asparaginase from Escherichia coli,L-Asparagine Amidohydrolase
  • Sustanon Injection
  • LASPAR
  • 1,2-Benzothiazol-3(2H)-one
  • CL059
  • Asparaginase (Owenism)
  • colaspase
  • crasnitin
  • elspar
  • kidrolase
  • l-asnase
  • l-asparaginasex
  • L-Asparaginase from Escherichia coli
  • Crasnitin Elspar
  • kisrolase
  • L-asparagise amidohydrolase
  • L-Asparaginase (L-?ASNase)
  • EC 3.5.1.1
  • L-ASPARAGINE AMIDOHYDROLASE
  • L-ASPARAGINASE
  • IUB: 3.5.4.4
  • ASPARAGINASE
  • l-asparaginasi
  • leunase
  • mk-965
  • nsc-109229
  • paronal
  • re82-tad-15
  • L-asparginase
  • ASPARAGINASE GRADE V FROM ESCHERICHIA CO
  • L-ASPARAGINASE FROM E. COLI, SUSPENSION, ~80 U/MG PROT.
  • asparaginase from escherichia coli
  • ASPARAGINASE FROM ESCHERICHIA COLISOLUTI ON IN GLYC
  • L-ASPARAGINASE FROM E. COLI &
  • ASPARAGINASE FROM ESCHERICHIA COLICHROMA TOGRAPHICA
  • L-Asparaginase from Guinea pig, Recombinant
  • Native Escherichia coli Asparaginase
  • Asparaginase from E. coli, Recombinant
  • L-Asparaginases
  • Asparaginase(Erwinia)
  • ASPARAGINASE USP/EP/BP
  • L-Asparaginase,EC 3.5.1.1
  • asparaginase from aspergillus niger expressed in aspergillus niger
  • AsparaginaseQ: What is Asparaginase Q: What is the CAS Number of Asparaginase Q: What is the storage condition of Asparaginase
  • Asparaginase(E.Coli Asi.357)
  • Alitretinoin Impurity 32
  • 9015-68-3
  • C24H24Cl3N3O6
  • BioChemical
  • Amino Acid Metabolism
  • General Metabolic Enzymes
  • Metabolomics
  • Steroid and Hormone
  • enzyme