Basic information Description References Safety Supplier Related
ChemicalBook >  Product Catalog >  Organic Chemistry >  Hydrocarbons and derivatives >  Cyclic hydrocarbons >  Epichlorohydrin

Epichlorohydrin

Basic information Description References Safety Supplier Related

Epichlorohydrin Basic information

Product Name:
Epichlorohydrin
Synonyms:
  • (chloromethyl)ethyleneoxide
  • (chloromethyl)-oxiran
  • New product 99.9% purity CAS 106-89-8 Epichlorohydrin CAS NO.106-89-8 Manufacturers wholesale
  • γ-Chloropropyleneoxide
  • CHLOROMETHYLOXIRANE
  • EPICHLOROHYDRINE
  • EPICHLORHYDRIN
  • G-CHLOROPROPYLENE OXIDE
CAS:
106-89-8
MF:
C3H5ClO
MW:
92.52
EINECS:
203-439-8
Product Categories:
  • organic chemical
  • Building Blocks
  • Chemical Synthesis
  • Epoxides
  • Organic Building Blocks
  • Oxygen Compounds
  • -
  • Chlorepoxypropane (Epichlorohydrin)
  • Organics
  • Oxiranes
  • Simple 3-Membered Ring Compounds
  • Pharmaceutical Intermedaites
Mol File:
106-89-8.mol
More
Less

Epichlorohydrin Chemical Properties

Melting point:
-57 °C
Boiling point:
115-117 °C(lit.)
alpha 
-1~+1°(D/20℃)(c=1,CH3OH)
Density 
1.183 g/mL at 25 °C(lit.)
vapor density 
3.2 (vs air)
vapor pressure 
13.8 mm Hg ( 21.1 °C)
refractive index 
n20/D 1.438(lit.)
Flash point:
93 °F
storage temp. 
Refrigerator (+4°C) + Flammables area
solubility 
65.9g/l
form 
Liquid
Specific Gravity
1.183 (20/4℃)
color 
APHA: ≤20
Odor
Pungent, garlic; sweet, pungent; like chloroform.
explosive limit
3.8-21%(V)
Water Solubility 
6 g/100 mL (10 ºC)
FreezingPoint 
-57.2℃
Merck 
14,3611
BRN 
79785
Henry's Law Constant
3.42(x 10-5 atm?m3/mol) at 25 °C (static headspace-GC, Welke et al., 1998)
Exposure limits
TLV-TWA(skin) 8 mg/m3 (2 ppm) (ACGIH); STEL (15 min) 19 mg/m3 (5 ppm) (NIOSH).
Stability:
Stability Unstable. Flammable - note wide explosion limits and low flash point. Vapours may flow along surfaces to source of ignition. Contact with strong oxidisers may lead to fire. Incompatible with strong acids, strong bases, strong oxidizing agents, metal salts, amines, aluminium, chlorine and a variety of chlorine compounds, most com
CAS DataBase Reference
106-89-8(CAS DataBase Reference)
NIST Chemistry Reference
Oxirane, (chloromethyl)-(106-89-8)
EPA Substance Registry System
Oxirane, (chloromethyl)-(106-89-8)
More
Less

Safety Information

Hazard Codes 
T
Risk Statements 
45-10-23/24/25-34-43
Safety Statements 
53-45
RIDADR 
UN 2023 6.1/PG 2
WGK Germany 
3
RTECS 
TX4900000
Autoignition Temperature
779 °F
TSCA 
Yes
HS Code 
2910 30 00
HazardClass 
6.1
PackingGroup 
II
Hazardous Substances Data
106-89-8(Hazardous Substances Data)
Toxicity
LD50 orally in rats: 0.09 g/kg (Smyth, Carpenter)

MSDS

More
Less

Epichlorohydrin Usage And Synthesis

Description

Epichlorohydrin is a kind of organochlorine compound as well as epoxide. It can be used as an industrial solvent. It is a highly reactive compound, and can be used for the production of glycerol, plastics, epoxy glues and resins, and elastomers. It can also be used for the production of glycidyl nitrate and alkali chloride, used as the solvent of cellulose, resins, and paint as well as being used as an insect fumigant. In biochemistry, it can be used as a crosslinking agent for the production of Sephdex size-exclusion chromatography resins. However, it is a potential carcinogen, and can cause various kinds of side effects on respiratory tract and kidneys. It can be manufactured through the reaction between allyl chloride with hypochlorous acid as well as alcohols.

References

https://en.wikipedia.org/wiki/Epichlorohydrin
https://pubchem.ncbi.nlm.nih.gov/compound/epichlorohydrin#section=Top

Chemical Properties

colourless liquid

Chemical Properties

Epichlorohydrin is a colorless liquid with a slightly irritating, chloroform-like odor.

Physical properties

Clear, colorless, mobile liquid with a strong, irritating, chloroform-like odor. Odor threshold concentration is 0.93 ppm (quoted, Amoore and Hautala, 1983).

Uses

Epichlorohydrin is used to make glycerol,epoxy resins, adhesive, and castings; asderivatives for producing dyes, pharmaceu-ticals, surfactants, and plasticizers; and asa solvent for resins, gums, paints, andvarnishes.

Uses

Solvent for natural and synthetic resins, gums, cellulose esters and ethers, paints, varnishes, nail enamels and lacquers, cement for Celluloid. As stabilizer.

Definition

ChEBI: An epoxide that is 1,2-epoxypropene in which one of the methyl hydrogens is substituted by chlorine.

General Description

A clear colorless liquid with an irritating chloroform-like odor. Density 9.8 lb / gal. Flash point 87°F. Polymerizable. If polymerization takes place inside a closed container, the container is subject to violent rupture. Irritates the skin and respiratory system. Toxic by ingestion. A confirmed carcinogen. Vapors heavier than air. Used to make plastics and as a solvent.

Air & Water Reactions

Highly flammable. Water soluble.

Reactivity Profile

Epichlorohydrin may polymerize exothermically if heated or contaminated. Reacts explosively with aniline. Ignites on contact with potassium tert-butoxide. Reacts with trichloroethylene to give the explosive dichloroacetylene. Violent reaction with sulfuric acid or isopropylamine. Exothermic polymerization on contact with strong acids or bases, zinc, aluminum, aluminum chloride, iron, ferric chloride [Sax, 9th ed., 1996, p. 1469].

Hazard

Toxic by inhalation, ingestion, and skin absorption; strong irritant, a carcinogen. Flammable, moderate fire risk. TLV: 0.5 ppm; animal carcinogen.

Health Hazard

Epichlorohydrin is toxic, carcinogenic, and astrong irritant. Its vapors can produce irrita-tion in the eyes, skin, and respiratory tract.Exposure to high concentration resulted indeath in animals, injuring the central nervoussystem. The liquid can absorb through humanskin, causing painful irritation of subcuta-neous tissues (ACGIH 1986). The symptomsof toxicity from high dosage in test animalswere paralysis of muscles and slow devel-opment of respiratory distress. Long expo-sures at 120 ppm for several hours resultedin lung, kidney, and liver injury in rats(Gage 1959). Ingestion by an oral routecaused tremor, somnolence, and ataxia inmice (NIOSH 1986). The toxic symptomsand lethal doses varied widely with animalspecies. The toxic metabolite of epichlorhy-drin could be ?- chlorohydrin ; thelatter was produced in vitro by rat livermicrosomes (Gingell et al. 1987).
A 25 ppm concentration may be detectableby odor. Exposure at this level may causeburning of the eyes and nose in humans.Above 100 ppm even a short exposure maybe hazardous to humans, causing nausea,dyspnea, lung edema, and kidney injury.
Epichlorohydrin is mutagenic and hasshown carcinogenicity in test animals. Itcaused tumors in the lungs and nose andat gastrointestinal and endocrine sites. Expo-sure to this compound caused harmful repro-ductive effects on fertility and birth defectsin mice.

Health Hazard

Epichlorohydrin is caustic as both a liquid and gas. Irritation of the eyes and skin, and skin sensitization has been observed. Exposure to epichlorohydrin has caused inflammation of the lungs, asthmatic bronchitis, and liver and kidney damage. In acute poisonings, death may be caused by respiratory paralysis.

Fire Hazard

When heated to decomposition, Epichlorohydrin evolves highly toxic fumes of phosgene and carbon monoxide. Reactive and incompatible with strong oxidizers, strong acids, caustics, zinc, aluminum, chlorides of iron and aluminumand compounds with an active hydrogen atom, including water. Unstable, avoid heat, contaminants, strong acids and bases, certain curing agents such as ethylenediamine. Hazardous polymerization may occur.

Chemical Reactivity

Reactivity with Water Mild reaction; not likely to be hazardous; Reactivity with Common Materials: No reaction; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Not pertinent; Polymerization: Can polymerize in presence of strong acids and bases, particularly when hot; Inhibitor of Polymerization: None used.

Contact allergens

Epoxy resin of the Bisphenol A type is synthesized from epichlorhydrin and bisphenol A. It leads to bisphenol A diglycidyl ether, which is the monomer ofbisphenol-A-based epoxy resins. Sensitization to epichlorhydrin occurs mainly in workers of the epoxy resin industry. Sensitization in individuals not working at epoxy resin plants is rare. It has, however, been described to occur following exposure to a soil fumigant, due to solvent cement, and in a worker in a pharmaceutical plant, in a division of drug synthesis. Epichlorhydrin was used for the production of drugs propranolol and oxprenolol.

Safety Profile

Confirmed carcinogen with experimental carcinogenic data. Poison by ingestion, skin contact, intravenous, and intraperitoneal routes. Moderately toxic by inhalation. An experimental teratogen. Other experimental reproductive effects. Human systemic effects by inhalation: respiratory, nose, and eyes. Human mutation data reported. A skin and eye irritant. A sensitizer. Flammable liquid when exposed to heat or flame. Explosive reaction with andine. Reaction with trichloroethylene forms the explosive dichloroacetylene. Ignition on contact with potassium tertbutoxide. Violent reaction with sulfuric acid or isopropylamine. Exothermic polymerization on contact with strong acids, caustic alkalies, aluminum, aluminum chloride, iron(II1) chloride, or zinc. When heated to decomposition it emits toxic fumes of Cl

Potential Exposure

Epichlorohydrin, an organochlorine, is used in the manufacture of many glycerol and glycidol derivatives and epoxy resins; as a stabilizer in chlorine-containing materials; as an intermediate in the preparation of cellulose esters and ethers, paints, varnishes, nail enamels, and lacquers; as a cement for celluloid. It is used as an intermediate in the manufacture of various drugs. Increased cancer risk.

Carcinogenicity

Epichlorohydrin is reasonably anticipated to be a human carcinogenbased on sufficient evidence of carcinogenicity from studies in experimental animals.

Environmental Fate

Biological. Bridié et al. (1979) reported BOD and COD values of 0.03 and 1.16 g/g using filtered effluent from a biological sanitary waste treatment plant. These values were determined using a standard dilution method at 20 °C for a period of 5 d. When a sewage seed was used in a separate screening test, a BOD value of 0.16 g/g was obtained. The ThOD for epichlorohydrin is 1.21 g/g.
Chemical/Physical. Anticipated products from the reaction of epichlorohydrin with ozone or OH radicals in the atmosphere are formaldehyde, glyoxylic acid, and ClCH2O(O)OHCHO (Cupitt, 1980). Haag and Yao (1992) reported a calculated OH radical rate constant in water of 2.9 x 108/M?sec.

storage

Epichlorohydrin is stored in a well-ventilated,cool place isolated from combustible andoxidizable materials, all acids and bases,and anhydrous metal halides. Protect fromphysical damage. It is shipped in metaldrums.

Shipping

UN2023 Epichlorhydrin, Hazard class: 6.1; Labels: 6.1-Poisonous materials, 3-Flammable liquid.

Purification Methods

Distil epichlorohydrin under atmospheric pressure, heat it on a steam bath with one-quarter its weight of CaO, then decant and fractionally distil it. [Beilstein 17 V 20.]

Incompatibilities

May form explosive mixture with air. Slowly decomposes on contact with water. Heat or strong acids; alkalies, metallic halides, or contaminants can cause explosive polymerization. Violent reaction with strong oxidizers, aliphatic amines; alkanolamines, amines (especially aniline), alkaline earths; chemically active metals (chlorides of aluminum, iron zinc); powdered metals (aluminum, zinc); alcohols, phenols, organic acids; causing fire and explosion hazard. Will pit steel in the presence of water. Thermal decomposition forms highly toxic phosgene gas. May accumulate static electrical charges, and may cause ignition of its vapors.

Waste Disposal

Incineration, preferably after mixing with another combustible fuel. Care must be exercised to assure complete combustion to prevent the formation of phosgene. An acid scrubber is necessary to remove the halo acids produced. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≧100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal

Regulations

Coast Guard, Department of Homeland Security
Minimum requirements have been established for safe transport of epichlorohydrin on ships and barges.
Department of Transportation (DOT)
Epichlorohydrin is considered a hazardous material and a marine pollutant, and special requirements have been set for marking, labeling, and transporting this material.
Environmental Protection Agency (EPA)
Clean Air Act
National Emissions Standards for Hazardous Air Pollutants: Listed as a hazardous air pollutant.
New Source Performance Standards: Manufacture or use of epichlorohydrin is subject to certain provisions for the control of volatile organic compound emissions.
Prevention of Accidental Release: Threshold quantity = 20,000 lb.
Clean Water Act
Designated a hazardous substance.
Comprehensive Environmental Response, Compensation, and Liability Act
Reportable quantity (RQ) = 100 lb.
Emergency Planning and Community Right-To-Know Act
Toxics Release Inventory: Listed substance subject to reporting requirements.
?Reportable quantity (RQ) = 100 lb.

Epichlorohydrin Preparation Products And Raw materials

Raw materials

Preparation Products

EpichlorohydrinSupplier

Mei Lan Industrial (Shanghai) Co., Ltd. Gold
Tel
021-61500788
Email
wouchina@126.com
Shanghai Aladdin Bio-Chem Technology Co.,LTD Gold
Tel
021-20337333/400-620-6333
Email
sale@aladdin-e.com
Shanghai Nuohey Chemical Co., Ltd. Gold
Tel
+86 (21) 52212593,51093016,13761626812,18217440778 QQ:2817342338,1658198360,934678158
Email
sales@nuohey.com
Shanghai Chen Yu Chemical Co., Ltd. Gold
Tel
13012824065
Email
121597535@qq.com
Shaanxi Jiandu Pharmaceutical Chemical Co. Ltd. Gold
Tel
029-89586682/89586680/63373951/15129568250
Email
support@dideu.com