Basic information Safety Supplier Related
ChemicalBook >  Product Catalog >  Biochemical Engineering >  Plant extracts >  Kavakavaresin

Kavakavaresin

Basic information Safety Supplier Related

Kavakavaresin Basic information

Product Name:
Kavakavaresin
Synonyms:
  • KAVAEXTRACTS
  • KAVARESIN
  • Kava Extract, 30% by HPLC
  • Kavalactone
  • Kava extract kava lactone
  • 2-[(E)-2-cyclohexa-1,5-dien-1-ylethenyl]-4-methoxy-2,3-dihydropyran-6-one
  • Ashwagandha Ayurvedic Extract
  • KAWA
CAS:
9000-38-8
MF:
C14H16O3
MW:
232.27504
Mol File:
9000-38-8.mol
More
Less

Kavakavaresin Chemical Properties

InChI
InChI=1S/C14H16O3/c1-16-13-9-12(17-14(15)10-13)8-7-11-5-3-2-4-6-11/h3,5-8,10,12H,2,4,9H2,1H3/b8-7+
InChIKey
OMNGEVNATYFZGG-BQYQJAHWSA-N
SMILES
C1(/C=C/C2C=CCCC=2)OC(=O)C=C(OC)C1
IARC
2B (Vol. 108) 2016
More
Less

Safety Information

Hazardous Substances Data
9000-38-8(Hazardous Substances Data)
More
Less

Kavakavaresin Usage And Synthesis

Description

Kava or Piper methysticum is a shrub of the pepper family, native to Micronesia, Melanesia, and Polynesia. There are approximately 150 different cultivars with different content and composition of active ingredients, consequently resulting in different intoxicating effects after ingestion. On average, the kava lactones account for 3–20% of dry weight of the kava root and have relatively low solubility in water. The active components of kava are mostly contained in the lipid-soluble resin where the lactones account for approximately 96%.
lactones varies according to the plant parts and the kava species used for extraction. The aerial parts of the shrub contain a relatively higher amount of alkaloids and are generally avoided in traditional preparations.
Traditionally, extractions are made with cold water or coconut milk from macerated dry or fresh root. Due to the low water solubility of the lactones, commercial kava products such as herbal supplements are made from organic solvents (i.e., acetone and ethanol).
During the 1990s, kava became very popular in Western countries resulting in increased import and demand. Following this popularity boom, a number of suspected kava-induced hepatotoxic events were reported. Kava preparations were banned in a number of European countries and the US Food and Drug Administration (FDA) issued warnings.

Uses

Aqueous extracts from the root of kava has been used for centuries in the South Pacific. The extract is used as a ceremonial and intoxicating drink, but has also been used as a medicine for various illnesses, including migraines and bladder disorders. The pharmacologically active compounds are the kava lactones, which allegedly possess analgesic, anticonvulsive, spasmolytic, and antimycotic effects.
In Western countries, organic kava extracts have gained popularity in the twentieth century as herbal supplements for treating anxiety and insomnia.

Biological Activity

Kavakavaresin is a synthetic drug that inhibits the activity of the polymerase chain reaction.

Toxicity evaluation

Mechanisms of action to explain kava’s pharmacological and toxicological properties are still incompletely understood. Known side effects are relatively mild and include allergic reactions and gastrointestinal complaints. Kava dermopathy is a well-recognized symptom in heavy kava users. It appears after weeks of ingestion as a scaly rash; however, the skin returns to normal upon cessation. There is an apparent dose–response relationship and the prevalence in heavy kava users has been reported to be 78%.
Amore serious issue is suspectedkava-induced hepatotoxicity. This has resulted in extensive studies of kava lactones, chalcones, and alkaloids. To date, there are no indisputable explanations and, due to the lack of dose dependency, kava-induced hepatotoxicity has been classified as idiosyncratic, possibly with involvement of the immune system.
Ninety-three cases of suspected kava-induced hepatotoxicity have been reviewed by the World Health Organization (WHO). However, in most cases the information was inadequate to determine whether hepatotoxicity was caused by kava. The reported symptoms were hepatitis, hepatic failure, cholestatic hepatitis, jaundice, abnormal hepatic function, and cirrhosis. The outcome in seven of the reviewed cases was death and 14 of the cases resulted in liver transplant. The mean duration to onset was 111 days and positive rechallenge tests were seen in five patients.
The form of kava use in the South Pacific and in Aboriginal communities is apparently not associated with the hepatotoxicity reported in Western countries. Elevated liver enzymes (gammaglutamyl transferase (GGT) and alkaline phosphatase (ALP)) have been reported in these kava users, consuming an average 118 g week-1. The symptoms were reversible upon cessation.
Involvement of glutathione (GSH) and possibly depletion of endogenous GSH has been proposed to be involved in the toxic mechanism. A recent study revealed that in vitro toxicity of kava and acetaminophen (APAP) was intensified by coadministration. Toxicity of APAP is due to formation of a reactive metabolite causing depletion of GSH. The increase in toxicity when kava was coadministered suggests that GSH somehow could be involved in detoxification of kava.
The possibility of kava acting as an inhibitor of specific metabolic enzymes has been investigated. In vitro results have shown that kava is indeed capable of altering the metabolic capacity of a number of P-450 enzymes; however, the relation to hepatotoxicity remains unclear.
Flavokavains have been identified as the most potent cytotoxic compounds in kava. Recently, the flavokavains gained attention as they have shown apoptotic effects on cancer cells. Among others, the targets include nuclear factor kappa beta (NF-kB), Bax, reactive oxygen species, and growth arrest and DNA-damage-inducible protein (GADD153). Like the lactones, these compounds have very low solubility in water. Thus, an organic extract would be expected to contain much higher concentrations than an aqueous extract. The toxicity of flavokavains is yet to be examined in vivo.
Poor quality kava products have been accused of being involved in the increased prevalence of kava-induced hepatotoxicity in Western countries. Due to the popularity boom, aerial parts of the shrub allegedly have been included in the material used to produce commercial kava preparations. Aerial parts are generally avoided in the South Pacific as they contain a relatively high amount of alkaloids such as pipermethystine, which has been reported to decrease cellular ATP levels and mitochondrial membrane potential and induce apoptosis in human HepG2 cells. Pipermethystine has, however, not been identified in commercial products in clinically significant amounts.
Another aspect of poor quality kava has recently been addressed. It has been proposed that, due to high temperatures and humidity in the South Pacific, mold would be able to develop rapidly in kava plant material not stored correctly. It has been suggested consequently that hepatotoxins including aflatoxins could be present in poor quality kava plant material.

KavakavaresinSupplier

Shaanxi xintianyu Biotechnology Co., Ltd. Gold
Tel
17749282610
Email
3002817800@qq.com
Shaanxi xintianyu Biotechnology Co., Ltd Gold
Tel
029-32565555 15596477170
Email
3002805869@qq.com
Shaanxi Jianchuang Biotechnology Co., Ltd. Gold
Tel
13335389838
Email
3305337057@qq.com
Shaanxi xintianyu Biotechnology Co., Ltd. Gold
Tel
029-32565555 17791023282
Email
943175747@qq.com
Xi'an Lyna Bio-Tech Co., Ltd. Gold
Tel
029-84161958 18629577295
Email
magic@lynabio.com